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density follows a power-law form: 
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signal on widely varying time scales

 Many systems exhibit noise with 

β≈1 (e.g. electrical components, 

intensity of stars, ocean currents 

and sea level, firing of neurons, 

loudness of music…

 Ubiquitous, but origin unknown!

Voss and Clarke, Nature 258, 317 (1975)

Loudness (left) and pitch (right) of radio 

broadcasts: (a) piano rags; (b) classical 

music; (c) rock music; (d) news and talk
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 Variety of systems exhibiting 1/f noise suggests a common 

underlying cause, similar to universality of critical exponents 

and power laws in critical phenomena

 Prior work (e.g. Richardson 1950, Hooge 1969, Voss & Clark 

1976) focused on conductors and other solids

 Proposed 1/f dependence as a consequence of diffusion and 

thermal fluctuations in electrical resistance

 Still no general explanation for 1/f noise, but theories 

increasingly point to relationship with non-equilibrium 

phenomena and scaling invariance



First model accounting for 1/f noise 

without specific physical details

 In the past, people have used diffusion theory to explain the 

1/f noise in vacuum tubes, resistors and amplifiers.

 Those theories require specific physical details, and rely on 

fine tuning of parameters in the diffusion equation.

 The parameters needed in this model are very few.



First computational simulation based on 

our theory

 Based on their model, the authors produced simulations 

demonstrating the f^(-1.1) power law for noise in three 

dimensions.



Simulation’s Implications

 This model suggests the two seemingly unrelated phenomena-

the fractal structure of self organizing systems and f^-β noise-

might have the same underlying mechanism

 Due to few parameters are required, this model has great 

universality

 Later works have used the same model to interpret more 

phenomena
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Simulation Setup

 Initialization

 Randomly assign z[x,y] >> threshold

 Evolve system until it stops (all z[x,y] less than threshold) at 

locally minimally stable state

 Simulation

 Each time-step, randomly increment lattice point

 Count number and “size” of cascades

 Size defined as number of lattice points affected



Distribution of Cluster Lifetimes Gives 

1/f Noise
 D(s) ~ s^(-τ)

 S = size of cascade

 D(s) = how frequently cascade of size s 
occurs

 τ = parameter

 Distribution of cluster lifetimes D(t) 
calculated from D(S)

 D(t) =(s/t)D(s(t))(ds/dt) ≡ t^(-α)

 Noise spectrum S(ω) calculated from D(t)

 S(ω) = ∫dt [t*D(t)]/[1+(ωt)^2]

 S(ω) ≈ ω^(-2 + α)

 2D: S(ω) ≈ ω^(-1.58)

 3D: S(ω) ≈ ω^(-1.1)
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Author’s Conclusions

 1/f power laws can be modeled by the dynamics of a self-

organized critical state of minimally stable clusters 

 Simulation produces S(ω) ≈ ω^(-1.1) 

 Generality of model’s applicability is yet unknown

 Could become the canonical model for temporal and spatial 

scaling in a wide variety of dissipative systems
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Critique

 Model’s simplicity provides compelling motivation for the 

widespread occurrence of 1/f phenomena

 Brevity of β≈1.1 claim undermines significance of results
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Thank You!


