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 In “pink” noise the power spectral 

density follows a power-law form: 

S(f) \propto f^-β

 Causes coherent fluctuations in 

signal on widely varying time scales

 Many systems exhibit noise with 

β≈1 (e.g. electrical components, 

intensity of stars, ocean currents 

and sea level, firing of neurons, 

loudness of music…

 Ubiquitous, but origin unknown!

Voss and Clarke, Nature 258, 317 (1975)
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 Variety of systems exhibiting 1/f noise suggests a common 

underlying cause, similar to universality of critical exponents 

and power laws in critical phenomena

 Prior work (e.g. Richardson 1950, Hooge 1969, Voss & Clark 

1976) focused on conductors and other solids

 Proposed 1/f dependence as a consequence of diffusion and 

thermal fluctuations in electrical resistance

 Still no general explanation for 1/f noise, but theories 

increasingly point to relationship with non-equilibrium 

phenomena and scaling invariance



First model accounting for 1/f noise 

without specific physical details

 In the past, people have used diffusion theory to explain the 

1/f noise in vacuum tubes, resistors and amplifiers.

 Those theories require specific physical details, and rely on 

fine tuning of parameters in the diffusion equation.

 The parameters needed in this model are very few.



First computational simulation based on 

our theory

 Based on their model, the authors produced simulations 

demonstrating the f^(-1.1) power law for noise in three 

dimensions.



Simulation’s Implications

 This model suggests the two seemingly unrelated phenomena-

the fractal structure of self organizing systems and f^-β noise-

might have the same underlying mechanism

 Due to few parameters are required, this model has great 

universality

 Later works have used the same model to interpret more 

phenomena
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Simulation Setup

 Initialization

 Randomly assign z[x,y] >> threshold

 Evolve system until it stops (all z[x,y] less than threshold) at 

locally minimally stable state

 Simulation

 Each time-step, randomly increment lattice point

 Count number and “size” of cascades

 Size defined as number of lattice points affected



Distribution of Cluster Lifetimes Gives 

1/f Noise
 D(s) ~ s^(-τ)

 S = size of cascade

 D(s) = how frequently cascade of size s 
occurs

 τ = parameter

 Distribution of cluster lifetimes D(t) 
calculated from D(S)

 D(t) =(s/t)D(s(t))(ds/dt) ≡ t^(-α)

 Noise spectrum S(ω) calculated from D(t)

 S(ω) = ∫dt [t*D(t)]/[1+(ωt)^2]

 S(ω) ≈ ω^(-2 + α)

 2D: S(ω) ≈ ω^(-1.58)

 3D: S(ω) ≈ ω^(-1.1)
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 1/f power laws can be modeled by the dynamics of a self-

organized critical state of minimally stable clusters 

 Simulation produces S(ω) ≈ ω^(-1.1) 

 Generality of model’s applicability is yet unknown

 Could become the canonical model for temporal and spatial 

scaling in a wide variety of dissipative systems
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Thank You!


