

Anderegg, Loïc et al. "An Optical Tweezer Array of Ultracold Molecules." Science 365.6458 (2019): 1156–1158. Crossref. Web.

Presented by:

Garrett Williams, Danielle

Woods, Drew Wild, and Yiqi, Xie

Original Researchers: Loïc Anderegg1,2, Lawrence W. Cheuk1,2, Yicheng Bao1,2, Sean Burchesky1,2, Wolfgang Ketterle2,3, Kang-Kuen Ni1,2,4, John M. Doyle1,2

Outline

- Motivation
- Overview
- Theoretical Background
 - Doppler Cooling
 - Magneto-optical traps
- Summary of Results
- Critical analysis and citation summary

Motivation

- Quantum Computation
 - Polar molecules can potentially provide stable qubits with ~5s coherence
- Improved Quantum Simulation
 - Dipole forces can introduce long range interactions
- Sensitive Detectors and Ultracold Chemistry

Overview

- This paper builds on previous experiments that created arrays of ultracold atoms
- A gas of CaF is trapped and cooled to the ultracold regime <1mK and further trapped by optical tweezers to form a 1-D array

A Two-Level System

Two-Level system

Gaseous state of atoms

"Sub-levels" in the two-level system

Spectral Linewidth

Orientation - Making an Optical Array --- Comparison with Other Work -- Citation Analysis

The Doppler Effect

Blue-shifting laser wavelength

Detuned-light can slow atoms/molecule

Orientation - Making an Optical Array --- Comparison with Other Work -- Citation Analysis

Orientation - Making an Optical Array --- Comparison with Other Work -- Citation Analysis

Magneto-Optical Trap (MOT)

MOT Beams use circularly polarized light

 $\pi: m \to m$

 $\sigma_{-}: m \to m-1$

*Imparting units of angular momentum on the system

$$L_{r} = m\hbar$$

MOT Beams use circularly polarized light

 $\sigma_+: m \to m+1$

 $\pi: m \to m$

 $\sigma_{-}: m \to m-1$

MOT Beams use circularly polarized light

Treating an atom/molecule as two-level system

Optical Tweezers

Orientation - Making an Optical Array --- Comparison with Other Work -- Citation Analysis

Optical Array – probabilistic recapture

Optical Array – dynamic traps

Experiment Apparatus and Summary of Results

Discussion of Results

- "Fully control and detect individual molecules"
- "Creation and detection of an array of ultracold calcium minifluoride (CaF) molecules trapped in optical tweezers"
- Verified occupancy was just one molecule
- Their light-collision rates are similar to that measured for rubidium atoms in optical tweezers.
 - Dipole moment also similar: suggests that molecular systems should have similar collision rates to those of atomic systems.

- This work:
 - Loading of diatomic molecules into optical tweezer arrays

- This work:
 - Loading of diatomic molecules into optical tweezer arrays
- Previous works:

- This work:
 - Loading of diatomic molecules into optical tweezer arrays
- Previous works:
 - Optical trapping of diatomic [1] and polyatomic [2] molecules

- This work:
 - Loading of diatomic molecules into optical tweezer arrays
- Previous works:
 - Optical trapping of diatomic [1] and polyatomic [2] molecules
 - Controlled molecular synthesis using optical tweezers [3]

- This work:
 - Loading of diatomic molecules into optical tweezer arrays
- Previous works:
 - Optical trapping of diatomic [1] and polyatomic [2] molecules
 - Controlled molecular synthesis using optical tweezers [3]
 - Deterministic loading of atoms into 1D [4] and 2D [5] optical tweezer arrays
- [1] Blackmore et al (2018), doi: 10.1088/2058-9565/aaee35
- [2] Kozyryev & Hutzler (2017), doi: 10.1103/PhysRevLett.119.133002
- [3] Liu et al (2018), doi: 10.1126/science.aar7797
- [4] Endres et al (2016), doi: 10.1126/science.aah3752
- [5] Barredo et al (2016), doi: 10.1126/science.aah3778

Citation Report

- Low citation number since it's new
- 2 citations according to Web of Science:
 - Making perfectly controlled arrays of molecules at rest (a Science perspective)
 - A scalable **quantum computing** platform using symmetric-top molecules (recent progress of the same team)

Broader Impacts

- Quantum computation
 - Searching
 - Solving linear equations
 - Cryptography

Broader Impacts

- Quantum computation
 - Searching
 - Solving linear equations
 - Cryptography
- Quantum simulation
 - Solving a wide range of many-body physics problems

Broader Impacts

- Quantum computation
 - Searching
 - Solving linear equations
 - Cryptography
- Quantum simulation
 - Solving a wide range of many-body physics problems
- Ultracold chemistry
 - Brand new methodology for chemistry research
 - Controlled reaction at molecular level

Conclusion

- Realized novel technique
- Demonstrated valid scientific approach
- Paved the way to future research involving ultracold molecules
- Raised broad interest in topics such as molecular dynamics, quantum information, quantum simulation, etc
- Not targeted for general audience

Thanks you for Listening!