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What is negative absolute temperature? 

• An ensemble of particles is said to have negative absolute temperature if 
higher energy states are more likely to be occupied than lower energy 
states. 

𝑃𝑖 ∝ 𝑒−𝐸𝑖/𝑘𝑇

• If high energy states are more populated than low energy states, entropy 
decreases with energy. 
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Negative absolute temperature



Previous work on negative temperature 

• The first experiment to measure negative temperature was 
performed at Harvard by Purcell and Pound in 1951. 

• By quickly reversing the magnetic field acting on a nuclear spin 
crystal, they produced a sample where the higher energy states were 
more occupied.  

• Since then negative temperature ensembles in spin systems have 
been produced in other ways. Oja and Lounasmaa (1997) gives a 
comprehensive review. 



Negative temperature for motional degrees of 
freedom 
• For the probability distribution of a negative temperature ensemble to be 

normalizable, we need an upper bound in energy.

• Since localized spin systems have a finite number of energy states there is a 
natural upper bound in energy. 

• This is hard to achieve in systems with motional degrees of freedom since 
kinetic energy is usually not bounded from above. 

• Braun et al (2013) achieves exactly this with bosonic cold atoms in an 
optical lattice.



What is the point?  

• At thermal equilibrium, negative temperature implies negative 
pressure.

• This is relevant to models of dark energy and cosmology based on 
Bose-Einstein condensation.

• Negative temperatures are also relevant for quantum simulations of 
many body systems that are not symmetric with respect to inversion 
of kinetic energy, for example, Kagome lattices.



Introducing the Bose-Hubbard Hamiltonian 

• Spinless bosons on a lattice are described by the Bose-Hubbard 
model:

• In specific regimes of J, U and V, the energies of this Hamiltonian are 
bounded. This means negative temperature states are possible. 

On-site interactionsKinetic/tunneling Trapping



Achieving Upper Bounds in Energy

Kinetic Energy is 
bounded

Interaction and Potential 
Energy?



Ground States of the Bose – Hubbard Model 
• Two ground states – Superfluid and 

the Mott Insulator 

• Superfluid : all particles exist in the 
same state (q = 0), lowest energy

• Mott Insulating Phase

• Can go from one to another by 
changing U/J



Cold atoms in optical lattices

• Need a system that faithfully simulates the Bose – Hubbard Model

• System --> Ultra cold atoms (bosonic or fermionic)

• (cold) atoms move in a potential set up by light (optical lattice) such 
that the whole system is isolated from the environment (don't want 
interaction with other positive temperature systems)

• Highly tunable with respect to almost all parameters!



How did they measure a negative temperature state?

• Bose-Einstein condensate in 
dipole trap

• Uses counter propagating 
laser beams to create a 
spatially periodic 
polarization pattern which 
can trap neutral atoms



How an Optical Time of Flight Probe Measures Negative Temperature

• Equation relating 
momentum and time:

• Possibly recording final 
intensity of the laser to 
measure optical 
density/absorbance



Momentum Distribution for Positive and Negative Temperature States
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Change in the Momentum Distribution as a Function of Time
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Change in the Momentum Distribution as a Function of Time
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Coherence of Positive vs. Negative Temperature States



Coherence of Positive vs. Negative Temperature States



Our Overview of the Paper

• Produced a Hamiltonian from the Bose-Hubbard model which described 
a negative temperature state

• Used time of flight measurements to detect a negative temperature 
state in a Bose-Einstein condensate

• Observed negative temperature states with stability greater than the 
positive temperature state



Our Overview of the Paper

• Produced a Hamiltonian from the Bose-Hubbard model which described 
a negative temperature state

• Used time of flight measurements to detect a negative temperature 
state in a Bose-Einstein condensate

• Observed negative temperature states with stability greater than the 
positive temperature state

Our takeaway?



Critical Analysis

Weaknesses

• Not very accessible to non-experts

• Jargon heavy

• Based experiment on another paper, but don't talk about the explicit 
details

• Didn’t mention whether they tried many trials for the positive 
temperature state

Strengths

• Provided supplemental material that was useful
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