CHARLIE MAIER, SIMONE MEZZASOMA, BENJAMIN MOY, HUNG TAN

LOCALIZATION PROBLEM IN ONE DIMENSION: MAPPING AND ESCAPE

M. KOHMOTO, L. KADANOFF, C. TANG

MOTIVATION

• Quasi-Crystal vs. Periodic Crystal: ordered but not periodic

Penrose tiling: an example of a 2D quasicrystal*

*By Inductiveload - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=5839079

MOTIVATION

- Quasi-Crystal vs Periodic Crystal: ordered but not periodic
- Not solvable with analytical tools used in periodic systems

MOTIVATION

- Quasi-Crystal vs Periodic Crystal: ordered but not periodic
- Not solvable with analytical tools used in periodic systems
- Allow us to study transition between localized and extended states

1-D QUASI-CRYSTAL

- Tight Binding Model
- $\psi(\mathbf{x}) \rightarrow \psi_n$

1-D QUASI-CRYSTAL

- Tight Binding Model
- $\psi(\mathbf{x}) \rightarrow \psi_n$
- $\psi_{n-1} + \psi_{n+1} + (\epsilon_n E)\psi_n = 0$ (Schrodinger Equation)

$\epsilon_n \in \{V_0, V_1\}$ $S_0 = \{V_0\}$

$\epsilon_n \in \{V_0, V_1\}$ $S_0 = \{V_0\}$ $S_1 = \{V_1\}$

$$\begin{split} \epsilon_n \in \{V_0, V_1\} & S_0 = \{V_0\} \\ S_1 = \{V_1\} \\ S_2 = \{V_1, V_0\} \\ S_3 = \{V_1, V_0, V_1\} \\ S_4 = \{V_1, V_0, V_1, V_1, V_0\} \end{split}$$

 $\epsilon_n \in \{V_0, V_1\} \qquad S_0 = \{V_0\} \\ S_1 = \{V_1\} \\ S_2 = \{V_1, V_0\} \\ S_3 = \{V_1, V_0, V_1\} \end{cases}$

 $S_4 = \{V_1, V_0, V_1, V_1, V_0\}$

. . .

1-D QUASI-CRYSTAL

TRACE MAP

 $\psi_{n-1} + \psi_{n+1} + (\epsilon_n - E)\psi_n = 0$

 $T_n\begin{pmatrix}\psi_n\\\psi_{n-1}\end{pmatrix}=\begin{pmatrix}\psi_{n+1}\\\psi_n\end{pmatrix}$ $T_n = \begin{pmatrix} E - \epsilon_n & -1 \\ 1 & 0 \end{pmatrix}$

 $M_{l} = T_{F_{l}-1} T_{F_{l}-2} \dots T_{0}$

 $M_{l+1} = M_{l-1}M_{l}$

$$x_{l+1} = 2x_l x_{l-1} - x_{l-2}$$

$$x_l = \frac{1}{2} \operatorname{Tr} M_l$$

SUMMARY OF RESULTS

- Periodic potential: solvable
- Quasi-crystal: not directly solvable
 - Reach solution in the infinite period (incommensurate) limit

SUMMARY OF RESULTS

- Periodic potential: solvable
- Quasi-crystal: not directly solvable
 - Reach solution in the infinite period (incommensurate) limit
- In the incommensurate limit:
 - Energy band width shrinks exponentially
 - Allowed energies become a Cantor-like set
 - States reach a compromise between localized and extended

Generalization of extended states

ANALYSIS OF RESULTS

- Scientifically valid, for a very specific system
- Methods very general
 - Applicable to many fields

ANALYSIS OF RESULTS

- Scientifically valid, for a very specific system
- Methods very general
 - Applicable to many fields
- Terse explanations; could be more accessible
 - Never mentions "tight-binding model"
 - Elaborate further upon allowed/forbidden energies & escape

ANALYSIS OF RESULTS

- Scientifically valid, for a very specific system
- Methods very general
 - Applicable to many fields
- Terse explanations; could be more accessible
 - Never mentions "tight-binding model"
 - Elaborate further upon allowed/forbidden energies & escape
- Introduction and conclusion are dated
 - Motivation is very cursory
 - Conclusion is non-existent

PREVIOUS (AND CONCURRENT) RESEARCH

- Conceptually motivated by previous mathematical research
- Methods incrementally built on previous physics research
 - Mapping to trace recursion
 - Stronger analysis of energy band widths

PREVIOUS (AND CONCURRENT) RESEARCH

- Conceptually motivated by previous mathematical research
- Methods incrementally built on previous physics research
 - Mapping to trace recursion
 - Stronger analysis of energy band widths

Magnetic potentials on lattices can produce similar Cantor spectra. Hofstadter, (1976).

PREVIOUS (AND CONCURRENT) RESEARCH

- Conceptually motivated by previous mathematical research
- Methods incrementally built on previous physics research
 - Mapping to trace recursion
 - Stronger analysis of energy band widths
- Published in parallel with very similar paper
 - Overlap in problem & results
 - Different methods

Magnetic potentials on lattices can produce similar Cantor spectra. Hofstadter, (1976).

IMPACT ON THE FIELD

- Foundational work in analyzing quasi-periodic potentials
 - Stepping stone for the authors for future work

EVOLUTION IN FIELD AND TECHNIQUES

• Published at the beginning of research on quasi-periodic systems

"Random Potential"
"Quasicrystal"
Citations

EVOLUTION IN FIELD AND TECHNIQUES

- Published at the beginning of research on quasi-periodic systems
- Shortly proceeded by larger interest in computational physics
 - Further development/availability
 - Changed how people analyzed these systems

RECAP

- Authors have developed useful methods
- They use these methods to solve for the energies in a specific case
- Can also be applied to other physical realizations
- Not very accessible to non-experts
- Foundational work but dated because of advent of computation