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MOTIVATION

• Quasi-Crystal vs. Periodic Crystal: ordered but not periodic

Penrose tiling: an example of a 2D 
quasicrystal*

*By Inductiveload - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=5839079
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MOTIVATION

• Quasi-Crystal vs Periodic Crystal: ordered but not periodic 

• Not solvable with analytical tools used in periodic systems 

• Allow us to study transition between localized and extended states
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1-D QUASI-CRYSTAL

• Tight Binding Model 

• (x)  

•   (Schrodinger Equation)

𝜓 → 𝜓𝑛

𝜓𝑛−1 + 𝜓𝑛+1 + (𝜖𝑛 − 𝐸)𝜓𝑛 = 0

𝜖1 𝜖2 𝜖3 𝜖4 𝜖5 𝜖6 𝜖7 𝜖8 𝜖9 𝜖10
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POTENTIAL

1-D QUASI-CRYSTAL

𝑉1 𝑉0 𝑉1 𝑉1 𝑉0 𝑉1 𝑉0 𝑉1 𝑉1 𝑉0

𝜖𝑛 ∈ {𝑉0, 𝑉1}

𝑆1 = {𝑉1}

𝑆2 = {𝑉1, 𝑉0}

𝑆3 = {𝑉1, 𝑉0, 𝑉1}

𝑆4 = {𝑉1, 𝑉0, 𝑉1, 𝑉1, 𝑉0}

𝑆0 = {𝑉0}

𝑆𝑙 = {𝑆𝑙−1, 𝑆𝑙−2}

…

𝐹𝑙 = 𝐹𝑙−1 + 𝐹𝑙−2

…



TRACE MAP

1-D QUASI-CRYSTAL

𝜓𝑛−1 + 𝜓𝑛+1 + (𝜖𝑛 − 𝐸)𝜓𝑛 = 0

𝑇𝑛 = (𝐸 − 𝜖𝑛 −1
1 0 )𝑇𝑛( 𝜓𝑛

𝜓𝑛−1) = (𝜓𝑛+1
𝜓𝑛 )

   𝑀𝑙 = 𝑇𝐹𝑙−1 𝑇𝐹𝑙−2… 𝑇0

 2  𝑥𝑙+1 = 𝑥𝑙 𝑥𝑙−1 − 𝑥𝑙−2
 𝑀𝑙+1 = 𝑀𝑙−1𝑀𝑙

 𝑥𝑙 =
1
2

Tr 𝑀𝑙



ENERGY BANDS

1-D QUASI-CRYSTAL

 Allowed energy 

Non-escaping
𝑥𝑚(𝐸) ≤ 1:

 Forbidden energy 

Escaping
𝑥𝑚(𝐸) > 1:

Increasing period

2 3 5 8 13 Fm



ENERGY BANDS

1-D QUASI-CRYSTAL

 Allowed energy 

Non-escaping
𝑥𝑚(𝐸) ≤ 1:

 Forbidden energy 

Escaping
𝑥𝑚(𝐸) > 1:

Increasing period

2 3 5 8 13 Fm

Cantor-like set
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SUMMARY OF RESULTS

• Periodic potential: solvable 

• Quasi-crystal: not directly solvable 

• Reach solution in the infinite period (incommensurate) limit 
• In the incommensurate limit: 

• Energy band width shrinks exponentially 
• Allowed energies become a Cantor-like set 
• States reach a compromise between localized and extended

Generalization 
of extended 

states
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ANALYSIS OF RESULTS

• Scientifically valid, for a very specific system 

• Methods very general 

• Applicable to many fields 
• Terse explanations; could be more accessible 

• Never mentions “tight-binding model” 
• Elaborate further upon allowed/forbidden energies & escape 

• Introduction and conclusion are dated 

• Motivation is very cursory 
• Conclusion is non-existent
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PREVIOUS (AND CONCURRENT) RESEARCH

• Conceptually motivated by previous mathematical research 

• Methods incrementally built on previous physics research 

• Mapping to trace recursion 
• Stronger analysis of energy band widths 

• Published in parallel with very 
similar paper 

• Overlap in problem & results 
• Different methods

Magnetic potentials on lattices can produce 
similar Cantor spectra. Hofstadter, (1976).



IMPACT ON THE FIELD

• Foundational work in analyzing quasi-periodic potentials 

• Stepping stone for the authors for future work
Ci

ta
tio

ns

0

18

35

53

70

Year

1980 1990 2000 2010 2020



EVOLUTION IN FIELD AND TECHNIQUES

• Published at the beginning of research on quasi-periodic systems
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EVOLUTION IN FIELD AND TECHNIQUES

• Published at the beginning of research on quasi-periodic systems 

• Shortly proceeded by larger interest in computational physics 

• Further development/availability 

• Changed how people analyzed these systems
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RECAP

• Authors have developed useful methods 

• They use these methods to solve for the energies in a specific case 

• Can also be applied to other physical realizations 

• Not very accessible to non-experts 

• Foundational work but dated because of advent of computation


