Team 2 Xuchen Cao, Alejandro Cárdenas-Avendaño & Patrick Carzon

ILLINOIS

Mostly based on: Xu & Balents, Phys. Rev. Lett. **121**, 087001

> 22.11.2019 PHYS 596

Goals of this Talk

Intro

Graphene

Model

Conclusions

Citation Evaluation

Goals of this Talk

Conclusions

Citation Evaluation

Graphene

Intro

Model

Twisted Bilayer graphene experimentally showed a very interesting behaviour

Goals of this Talk

An effective model was proposed to explain it

Intro

Graphene

Model

Conclusions

Citation Evaluation

Twisted Bilayer graphene experimentally showed a very interesting behaviour

Evolution of superconducting transitions over time

E.		
	6 3	

Conclusions

Model

Evolution of superconducting transitions over time

Intro

Graphene

Conclusions

Citation Evaluation

Intro

Intro

Normalized carrier density (cm⁻²) 10¹¹ 10¹² 10¹³ 10² FeSe(1L)/STO 14 ه ک Critical temperature, $T_{\rm c}$ (K) / 61 i $A_{3}C_{60}$ $(\times 10^{8})$ 1 8H01 10¹ BEDT 🛋 11 NbSe₂ 01 ⁴⁰K (×10⁸) Na_xCoO₂ U₆Fe 10-1 * UPd₂Al₃ TMTSF_ Magic-angle TBG URu_2Si_2 * UBe₁₃ °,7F SrTiO₃ EDLT *UPt LAO/STO 10-1 10⁻²- 10^{2} 1⁰⁰ 1⁰³ 10¹

> Model Conclusions **Citation Evaluation**

Intro

Graphene

How "strong" is a superconductor

- * Heavy-fermion superconductors
- Cuprates
- Iron pnictides
- Conventional superconductors ♦
- BEC in atoms
- Two-dimensional materials
- Organic superconductors
- NbSe₂ • $A_{3}C_{60}$
- \triangle Na_xCoO₂ \blacksquare CaC₆
- Magic-angle TBG

Strange Materials: Mott insulator

Intro

Graphene

Model

Conclusions

Citation Evaluation

Strange Materials: Mott insulator

but are insulators when measured

Conclusions

Materials that conduct electricity under conventional band theories (CBTs)

Strange Materials: Mott insulator

- but are insulators when measured
- transfer integral of electrons (t) between neighboring atoms (z)

Conclusions Citation Evaluation

Model

Graphene

Intro

Materials that conduct electricity under conventional band theories (CBTs)

Energy gap understood as competition between coulomb potential (U) and

Eqap=U-2zt

Strange Materials: Mott insulator

- but are insulators when measured
- transfer integral of electrons (t) between neighboring atoms (z)

Model

Simplest **Mott insulator** is the Hubbard model

Conclusions

Citation Evaluation

Graphene

Intro

Materials that conduct electricity under conventional band theories (CBTs)

Energy gap understood as competition between coulomb potential (U) and

Eqap=U-2zt

Intro

Model

Conclusions

Citation Evaluation

- A model to describe interacting fermions where
 - They can only move between lattice sites
 - Interactions only happen at the lattice sites

Model

- A model to describe interacting fermions where
 - They can only move between lattice sites 0
 - Interactions only happen at the lattice sites 0

Model

- A model to describe interacting fermions where
 - They can only move between lattice sites 0
 - Interactions only happen at the lattice sites 0

$$H = -t \sum_{\langle ij \rangle} \left[c^{\dagger}_{i\alpha} c_{j\alpha} + \frac{1}{\langle ij \rangle} \right]$$

Intro

Giamarchi (2017)

- A model to describe interacting fermions where
 - They can only move between lattice sites 0
 - Interactions only happen at the lattice sites \bigcirc

Intro

- A model to describe interacting fermions where
 - They can only move between lattice sites 0
 - Interactions only happen at the lattice sites \bigcirc

Intro

The Graphene direct and reciprocal structure

Intro

Graphene

Model

Conclusions

Geim and MacDonald (2007)

The Graphene direct and reciprocal structure

Intro

Graphene

Model

Conclusions

Geim and MacDonald (2007)

Intro

Graphene

Model

Conclusions

Citation Evaluation

An interesting twist on graphene

Intro

Graphene

Model

Conclusions

Citation Evaluation

An interesting twist on graphene

Intro

Graphene

Model

Conclusions

Citation Evaluation

An interesting twist on graphene

Physics Today (2018)

Magic angles give interesting phases

RESISTANCE ($k\Omega$)

Magic angles give interesting phases

0

Twisted Graphene

RESISTANCE ($k\Omega$)

Magic angles give interesting phases

0

Twisted Graphene⁸

Credits: Holger Motzkau

Band Structure of Bilayer Graphene

Intro

Graphene

Model

Conclusions

Citation Evaluation

Band Structure of Bilayer Graphene

Intro

Graphene

Model

Conclusions

Citation Evaluation

Band Structure of Bilayer Graphene

Intro

Graphene

Model

Conclusions

 $\mathcal{H} = \begin{pmatrix} h_k(\frac{\theta}{2}) & T_b \\ T_b^{\dagger} & h_{k_b}(-\frac{\theta}{2}) \\ T_{tr}^{\dagger} & 0 \end{pmatrix}$

Citation Evaluation

$$egin{array}{ccc} T_{tr} & T_{tl} & 0 & 0 \ h_{k_{tr}}(-rac{ heta}{2}) & 0 & 0 \ 0 & h_{k_{tl}}(-rac{ heta}{2}) & 0 \end{array}$$

Band Structure of Bilayer Graphene

 $h_k(\theta) = -vk\left(e^{-\frac{1}{2}}\right)$

Intro

Graphene

Model

Conclusions

 $\mathcal{H} = egin{pmatrix} h_k(rac{ heta}{2}) & T_b \ T_b^\dagger & h_{k_b}(-rac{ heta}{2}) \ T_{tr}^\dagger & 0 \ T_{tr}^\dagger & 0 \ T_{tr}^\dagger & 0 \ \end{bmatrix}$

Citation Evaluation

1

$$\begin{array}{ccc} T_{tr} & T_{tl} \\ 0 & 0 \\ h_{k_{tr}}(-\frac{\theta}{2}) & 0 \\ 0 & h_{k_{tl}}(-\frac{\theta}{2}) \end{array}$$

$$\begin{pmatrix} 0 & e^{i(heta_k - heta)} \\ -i(heta_k - heta) & 0 \end{pmatrix}$$

Band Structure of Bilayer Graphene

 $\mathcal{H} = \begin{pmatrix} h_k(\frac{\theta}{2}) & T_b \\ T_b^{\dagger} & h_{k_b}(-\frac{\theta}{2}) \\ T_{tr}^{\dagger} & 0 \\ T_{tr}^{\dagger} & 0 \end{pmatrix}$ $h_k(\theta) = -vk\left(\right.$ 1

Intro

Graphene

Model

Conclusions

Citation Evaluation

$$\begin{array}{ccc} T_{tr} & T_{tl} \\ 0 & 0 \\ h_{k_{tr}}(-\frac{\theta}{2}) & 0 \\ 0 & h_{k_{tl}}(-\frac{\theta}{2}) \end{array}$$

Single layer Hamiltonian

$$egin{array}{ccc} 0 & e^{i(heta_k- heta)} \ -i(heta_k- heta) & 0 \end{array} \end{pmatrix}$$

 $\mathcal{H} = \begin{bmatrix} T_b^{\dagger} \\ T_b^{\dagger} \\ T_{tr}^{\dagger} \end{bmatrix}$

Band Structure of Bilayer Graphene

Twisted angle

 $T_b \ h_{k_b}(-rac{ heta}{2}) \ 0$

Conclusions

Citation Evaluation

1

$$egin{array}{ccc} T_{tr} & T_{tl} \ 0 & 0 \ h_{k_{tr}}(-rac{ heta}{2}) & 0 \ 0 & h_{k_{tl}}(-rac{ heta}{2}) \end{pmatrix}$$

Single layer Hamiltonian

$$egin{array}{ccc} 0 & e^{i(heta_k- heta)} \ -i(heta_k- heta) & 0 \end{array} \end{pmatrix}$$

Band Structure of Bilayer Graphene Transfer Amplitudes Twisted angle T_{tl} T_{tr} $h_{k_b}(-rac{ heta}{2}) \ 0$ $h_{k_{tr}}(-\frac{\theta}{2})$ $h_{k_{tl}}$

Conclusions

1

Single layer Hamiltonian

$$egin{array}{c} 0 & e^{i(heta_k- heta)} \ -i(heta_k- heta) & 0 \end{array} \end{pmatrix}$$

Twisting creates a flat band

Intro

Graphene

Model

Conclusions

Citation Evaluation

- The bilayer system forms flat bands 0 at the magic angles
- We should now work in a **reduced** 0 ΒZ
- At magic angle **DOS** peaks at the E=0

Graphene

- The bilayer system forms flat bands \bigcirc at the magic angles
- We should now work in a **reduced** ΒZ
- At magic angle **DOS** peaks at the E=0

Graphene

- The bilayer system forms flat bands 0 at the magic angles
- We should now work in a **reduced** 0 ΒZ
- At magic angle **DOS** peaks at the E=0

Graphene

- The bilayer system forms flat bands 0 at the magic angles
- We should now work in a **reduced** 0 ΒZ
- At magic angle **DOS** peaks at the E=0

Graphene

Conclusions

θ=3[°] 0.08 0.06 0.04 0.02 E (eV) 0. -0.02 0.04 -0.06 0.08. -0.1 0.2 0.2 -0.1 k, ⁰ -0.2

Cao. et. al., (2018)

- The bilayer system forms flat bands 0 at the magic angles
- We should now work in a reduced ΒZ
- At magic angle **DOS** peaks at the E=0

Intro

Graphene

Conclusions

Cao. et. al., (2018)

An effective model to explain flat bands

Graphene

Model

Conclusions

An effective model to explain flat bands

Graphene

Model

Conclusions

An effective model to explain flat bands

valley degrees of freedom in the original problem

<u>Conclusions</u>

• There is a **SU(4)** flavor structure for fermions, corresponding to the spin and

An effective model to explain flat bands

- valley degrees of freedom in the original problem
 - approximated by a Hubbard term

Graphene

Model

<u>Conclusions</u>

Citation Evaluation

• There is a **SU(4)** flavor structure for fermions, corresponding to the spin and

Assume that the hopping term does not mix flavors and Coulomb interaction is

An effective model to explain flat bands

- valley degrees of freedom in the original problem
 - approximated by a Hubbard term

 $ij\alpha$

Intro

Graphene

Model

Conclusions

Citation Evaluation

• There is a **SU(4)** flavor structure for fermions, corresponding to the spin and

Assume that the hopping term does not mix flavors and Coulomb interaction is

Conclusions

Intro

Graphene

Model

Conclusions

Citation Evaluation

Conclusions

Effective model for TBG is proposed that explains recently detected Θ superconducting phase

Intro

Model

Conclusions

- **Effective model** for TBG is proposed that explains recently detected superconducting phase
- 0 through a **repulsive force**.

Conclusions

Model assumes electrons lie in flat bands that interact with one another

Conclusions

- **Effective model** for TBG is proposed that explains recently detected superconducting phase
- Model assumes electrons lie in flat bands that interact with one another \bigcirc through a **repulsive force**.
- The material's ground state is calculated for various electron densities in the limit of strong repulsive interactions.

Intro

Graphene

Conclusions

Citation Evaluation

- **Effective model** for TBG is proposed that explains recently detected superconducting phase
- Model assumes electrons lie in flat bands that interact with one another through a **repulsive force**.
- The material's ground state is calculated for various electron densities in the limit of strong repulsive interactions.
- Model predicts a Mott insulating state showing unconventional 0 superconductivity, agreeing experiments

Intro

Graphene

Model

Conclusions

Citation Evaluation

Our Conclusions

Lack of organization: no headers for the 0 Introduction, Methods, and Conclusion

Our Conclusions

- Lack of organization: no headers for the 0 Introduction, Methods, and Conclusion
- Lack of justification in use of a coupling as SU(4) 0 symmetry-breaking perturbations

Model

Our Conclusions

- Lack of organization: no headers for the 0 Introduction, Methods, and Conclusion
- Lack of justification in use of a coupling as SU(4) 0 symmetry-breaking perturbations
- Jargon heavy, not accessible to non-experts 0

Model

- Lack of organization: no headers for the 0 Introduction, Methods, and Conclusion
- Lack of justification in use of a coupling as SU(4) symmetry-breaking perturbations
- Jargon heavy, not accessible to non-experts 0
- Impact in topological superconductors and strong correlation physics

- Lack of organization: no headers for the 0 Introduction, Methods, and Conclusion
- Lack of justification in use of a coupling as SU(4) symmetry-breaking perturbations
- Jargon heavy, not accessible to non-experts 0
- Impact in topological superconductors and strong correlation physics
- We recommend it for publication with minor 0 modifications.

- Lack of organization: no headers for the Introduction, Methods, and Conclusion
- Lack of justification in use of a coupling as SU(4) symmetry-breaking perturbations
- Jargon heavy, not accessible to non-experts
- Impact in topological superconductors and strong correlation physics
- We recommend it for publication with minor 0 modifications.

- 143 citations according to Google Scholar
 - Most cited paper that cites this paper is "Origin of Mott Insulating" Behavior and Superconductivity in Twisted Bilayer Graphene" with 167 citations.

Model

Conclusions

Citation Evaluation

Intro

Graphene

Model

Conclusions

Citation Evaluation

1			
ni	٢r	\cap	
	LI	U	
		\sim	

Graphene

Model

Conclusions

Citation Evaluation

Source: https://paperscape.org

AND CRAZY

Thank you!

