Team 5 Journal Club Presentation: "Electron-Phonon Decoupling in Disordered Insulators"

Kevin Kleiner, Ming-Wei Liu, Chad Lantz, and Joey Li

Main Idea: Electron Overheating

- Material of interest: disordered superconductors into the insulating phase.
- Phenomenon: Large jumps in current as a function of voltage.
- They conclude that it shows the electrons are decoupled from the phonon bath, in the insulating state.
- Theory: the proposed explanation is that the large jumps are due to a overheating of electrons resulting from bistability.
 - There is a companion theory paper (by different authors, but it seems that the two groups were working in collaboration)
 - Jumps in Current-Voltage Characteristics in Disordered Films by Altshuler, Kravtsov, Lerner, and Aleiner, PRL 2009.

The Superconductor-Insulator Transition

- Name of the game: competing degrees of freedom
- Superconductor-insulator transition: superconductivity quenched with increasing B-field [1]
- Microscopic picture for this insulating phase

Schematic of competing degrees of freedom in condensed matter

Electron-Phonon Interactions

- Specifically, they look into the electrons and lattice (phonons) in disordered materials
- Argument: electrons vastly overheat relative to lattice in this phase
- <u>Evidence:</u> experimental current-voltage behavior for 30-nm thick InO_x films at B = 11 T

Simplified schematic of electronic and lattice degrees of freedom

Current Jumps Indicate Electron Overheating

 Notice jumps of curves and asymmetry of sides

Plot of current magnitude vs. voltage at varying temperatures.

Electronic Temperatures Inferred

- Electronic temperature (T_{el}) derived from current-voltage
- Suggests T_{el} overheating

Plot of electronic temperature vs. voltage at varying temperatures

Excluded Electronic Temperatures

- Voltage sweeps on columns
- Notice excluded region of electronic temperatures on bottom left
- Staggering of jumps

Bi-Stabilities and Jumps

- T_{el} S-shape from theory
- Bi-stability results in jumps
- Key Takeaway: Insulating InO_x films decouple electrons and phonons

Plot of electronic temperature vs. voltage from accompanying theory

Similar Predictions in Previous Work

- Prior work established the superconductor-insulator transition with B [1]
- Excluded region in prior theoretical predictions for current-voltage behavior [2]
- Ref. [2] first demonstrated the bi-stability phenomenon

Theoretical plot of electronic temperature vs. phonon temperature in ref. [3]

^[1] Boris L. Altshuler, et al., Phys. Rev. Lett., **102**, 176803 (2009).[2] G. Sambandamurthy, et al., Phys. Rev. Lett., **94**, 017003 (2005).

Scope

- The prominence of PRL assures the paper will be read by a diverse audience
 - No reasoning for why people other than Condensed Matter Physicists should be interested
 - No indication if the conditions in the experiment reflect anything outside the lab

Lack of Errors

No errors

- In figures and text there are no error bars
- Writers explain points near V = 0 are omitted due to excessive error

Experiment/Theory Comparison

- Experiment (top) vs theory (bottom)
 - Isotherms seem to match very closely after close inspection, though presented poorly
 - A simple change in line colors could illustrate the match much better

Metrics

- 64 Citations in Scopus
 (88th percentile in Physics and Astronomy)
- 2.85 Field-Weighted Citation Impact
 (>1 means the document is more cited than expected)
- PRL highlights: "Featured in Physics" and "Editors' Suggestion"
- Mentioned in Wikipedia as criticism of "Superinsulator"

Citations

Future research

- Many-body localization
- Superconductor-insulator transition

Top 3 citations

- "Universal dynamics and renormalization in many-body-localized systems" [1]
- "Superconductor-insulator quantum phase transition" [2]
- "Fractal superconductivity near localization threshold" [3]
- [1] E. Altman and R. Vosk, Annu. Rev. Condens. Matter Phys., **6**(1), 383-409 (2015)
- [2] V.F. Gantmakher and V.T. Dolgopolov, *Physics-Uspekhi*, **53**(1), 1-49 (2010)
- [3] M.V. Feigel'man, et al., Annals of Physics, 325(7), 1390-1478 (2010)

Conclusions

- This work seems to represent a significant advance in understanding the unusual features of the insulating state of disordered superconductors.
- Opens the door to future theoretical work:
 - the results seem to show that electron transport is dependent only on the electron temperature,
 - o need to identify a new phonon-independent mechanism to explain the insulating behavior.
- Experimental techniques seem to be mostly standard.

Recent progress (same team)

- Inhomogeneous conduction state (2011)
 - "Electric breakdown effect in the current-voltage characteristics of amorphous indium oxide thin films near the superconductor-insulator transition" [1]
- Second-order phase transition (2016)
 - "Nonequilibrium Second-Order Phase Transition in a Cooper-Pair Insulator" [2]
- Directly measurement (2016)
 - o "Direct determination of the temperature of overheated electrons in an insulator" [3]
- Quantum phase transitions (2017)
 - "Instability of Insulators near Quantum Phase Transitions" [4]
- [1] O. Cohen, et al., Phys. Rev. B 84,100507 (2011)
- [2] A. Doron, et al., Phys. Rev. Lett. 116, 057001 (2016)
- [3] T. Levinson, et al., Phys. Rev. B 94, 174204 (2016)
- [4] A. Doron, et al., Phys. Rev. Lett. 119, 247001 (2017)