Phys 598 EW  Elastic Waves     Fall 2015

 

Instructor:  Prof Richard Weaver   OFFICE HOURS:  Tuesdays 1-3 pm (begin 9/1/5)

r-weaver@illinois.edu

4115 ESB    333-3656

---------------------------

Standard texts and monographs, all with a view towards solving classical problems in elastic wave propagation:

 

                  K. F. Graff,  "Wave Motion in Elastic Solids,"  Dover , NY 1975 (inexpensive!)

                                     

                  J.D. Achenbach,  "Wave Propagation in Elastic Solids,  NorthHolland/Elsevier

                                    Emphasis on exact solutions for unbounded and simply bounded media

                  R. Truell, C. Elbaum and B. Chick, "Ultrasonic methods in solid state physics,"

Emphasis on ultrasonics in unbounded media and half spaces.

                  J. Miklowitz "Theory of elastic waves and waveguides" 1978

                                    Waveguides: Plates and rods

                  Y-H Pao and C C Mow "Diffraction of Elastic Waves and Dynamic Stress

Concentrations"   Rand Corp. 1973.  Emphasis on scattering in simple geometries

K. Aki and P.G. Richards, "Quantitative Seismology,"

High level; Attention confined to 3-d, with emphasis on applications in

seismology.

 

================

 

Course will meet twice a week M W 11:00 Ð 12:20.    Grade will be based on weekly (occasionally twice weekly?) HW assignments and class participation, and on a final exam.

===========

 

Schedule

 

Monday 8/24

Lecture 1

 

Wednesday 8/26

Lecture 2

 

Monday 8/31

Lecture 3

HW 1. due    Solution

Wednesday 9/02

Lecture 4

 

Monday 9/07

Labor Day, no class

 

Wednesday 9/09

Lecture 5

HW 2. due  Solution

Monday 9/14

Lecture6

 

Wednesday 9/16

Lecture7

HW 3 due   Solution

Monday 9/21

Lecture8

 

Wednesday 9/23

Lecture9

HW4 due   Solution

Monday 9/28

Lecture10

 

Wednesday 9/30

Lecture11

HW5 due  Solution

Monday 10/05

Lecture12

 

Wednesday 10/07

Lecture13

HW6 due   Solution

Monday 10/12

Lecture14

 

Wednesday 10/14

Lecture15

HW7due solution

Monday 10/19

Lecture16

 

Wednesday 10/21

 

 

Monday 10/26

Lecture17

HW8 due   solution

Wednesday 10/28

Lecture18

HW9 due   solution

Monday 11/02

Lecture19

 

Wednesday 11/04

Lecture20

HW10 due  solution

Monday 11/09

Lecture21

 

Wednesday 11/11

Lecture22

HW11 due  solution

Monday 11/16

Lecture23

 

Wednesday 11/18

Lecture24

HW12 due (on Friday)

Monday 11/23

Fall Break

     HW12 solution

Wednesday 11/25

Fall Break

 

Monday 11/30

Lecture25

 

Wednesday 12/02

Lecture26

HW13 due   solution

Monday 12/07

Lecture27

 

Wednesday 12/09

Lecture28

HW14 due   solution

Final exam =  HW15 due by 4:30 Th Dec 17

 

Tentative course outline:

 

I.    Graff 5.1.1  Review of linear elasticity -

 Stress, strain, traction, constitutive laws, Boundary Conditions

    Balance of Momentum - Displacement Equation of Motion - energy balance

 Lagrangian re-formulation

 

Helmholtz Decomposition of displacement field, displacement potentials

5.1.2 Alternate forms for Equation of motion

5.1.3 Plane Waves of P & S type

 Visco-Elastic Constitutive relations, Attenuation & Dispersion of Plane waves

 

II.  Governing Equations (often approximate) in reduced dimensions

 

                  2-d  

                  Plane strain  SH and P-SV

                  Plane stress      extensional waves in thin plates

                                                      SH waves in thin (or thick) plates

                                                      Bending waves in thin plates, Kirchoff plate theory.

 

                  1d

                  Torsional waves in circular rods

                  Bending waves in beams, Euler-Bernoulli theory

                  Extensional waves in rods

                 

                  Strings

                                    derivation of linearized equation

 

 

III  Applications in reduced dimensions, Exercises in Fourier Transforms and Greens functions and scattering.

 

A.   1-d several mathematical exercises on  (Graff Chapters1,2 and 3)

scattering, dispersion and responses of strings.

 

B.   Kirchoff plates  Graff Chapter 4

 

 Free Vibration

 

plane waves

circular crested waves

Harmonic waves & Dispersion relations

 for Cartesian

and Polar co-ordinates

 

The Infinite stiff ribbon, a Multi branched dispersion relation

 

Finite systems, normal modes

 

    Forced Vibration; Greens functions

Infinite plates, Triple FT's, & Hankel Transforms

Infinite ribbon

            Finite systems

 

IV  Elastodynamics in 3 dimensions                                                    5 weeks

 

     The Fundamental solution, the Green's Dyadic in unbounded 3-d media (Graff 5.2.3 )

              => in k,w Fourier Transform space

             =>  as a function of r and w, the "harmonic G's Dyadic" -

                  Energy Flow for Harmonic Solution

              in the time domain, as a function of r & t

 

                  Strain Nuclei sources

 

Solutions in Half Spaces

  Free vibration:    (Graff 6.1 )

               P/SV and SH Reflections, Mode Conversions, Snell's law, Critical angles

 

                 Rayleigh Surface Waves

 

Other boundary conditions

 

               Layered Half space - Love Waves

 

Forced problems

6.2 SH sources in Half spaces

 

6.3    P/SV sources in half spaces -

 

Line sources and point sources; Lamb's Problem; Cagniard Method,

 

other sources in half spaces.

 

6.4    Free vibrations in Joined Half spaces, especially fluid/solid case

 

                 Reflections, Transmissions, Surface waves, Leaky Surface waves

 

V.  Elastic waveguides

Graff 8.    Rayleigh-Lamb Waves in a Plate

Pochammer waves in a rod

 

                 Responses in Waveguides: Green's functions in an isotropic plate:

 

                Normal Mode Solution, Ray Theory Solution, Numerical Inversion

 

 

VI Statistics of elastic waves in irregular reverberant bodies.

                  Multiple scattering in random media   - average G, and effective maedium

                  Diffuse field assumption and its justification.

                  Consequences

                                    Universal Partition,  surface/bulk  and P/S  and H/V.

                                    Diffusion of multiply scattered wave energy

                                    Enhanced backscatter

                                    Field correlations = Greens function.

 

============