Useful Formulae

Physical constants

Avagadro's number	NI.	$6.022 \times 10^{23} / \text{mol}$
· ·		
Boltzmann constant	k_B	$1.38 \times 10^{-23} \text{ J/K}$
		$8.617 \times 10^{-5} \text{ eV/K}$
Ideal gas constant	R	8.314 J/mol K
		$8.206 \times 10^{-2} l atm / mol K$
		$k_B N_A$
Gravity at sea level	g	9.8 m/s^2
One atmosphere		$1.013 \times 10^5 \text{ Pa (J/m}^3)$
speed of light	С	$2.998 \times 10^8 \text{ m/s}$
Planck constant	h	$6.626 \times 10^{-34} \text{ J s}$
		$4.135 \times 10^{-15} \text{ eV s}$
	\hbar	$1.054 \times 10^{-34} \text{ J s}$
		$0.658 \times 10^{-15} \text{ eV s}$
electron volt	eV	$1.602 \times 10^{-19} \text{ J}$
electron charge	e	$1.602 \times 10^{-19} \text{ C}$
electron mass	m_e	$9.109 \times 10^{-31} \text{ kg}$
electron mag moment	μ_e	$9.2848 \times 10^{-24} J/T$
proton mass	m_p	$1.673 \times 10^{-27} \text{ kg}$
proton mag moment	μ_p	$1.4106 \times 10^{-26} J/T$
neutron mass	m_n	1.675×10^{-27} kg
		939.6 MeV/ c^2

Molecular	masses	
Particle	g/mol	
$\overline{N_2}$	28	
O_2	32	
He	4	
Ar	40	
CO_2	44	
H_2	2	
Si	28	
Ge	73	
Cu	64	
Al	27	

Symbol	meaning
T	Temperature
U	Internal energy
S	Entropy
Ω	Number of equally probable states
C_V	Heat capacity at constant volume
C_p	Heat capacity at constant pressure
V	Volume
p	Pressure
μ	Chemical potential
N	Number of particles
n	Number of moles of particles $(n = N/N_A)$
dW_{on}	Work on $-pdV$
dW_{bv}	Work by <i>pdV</i>
H	Enthalpy $U + pV$

Mathematical identities and combinatorics

N distinguishable particles with M possible states each N indistinguishable particles with M possible states each Choose q from N options without replacement

$$M^{N}$$

$$M^{N}/N!$$

$$\binom{N}{q} = \frac{N!}{q!(N-q)!}$$

$$\ln(A) - \ln(B) = \ln(A/B)$$
$$e^{A+B} = e^A e^B$$

Derivatives and differentials

Thermodynamic derivative notation.

$$\left(\frac{dS}{dU}\right)_{V.N} \equiv \frac{\partial S(U,V,N)}{\partial U}$$

Integration to find changes

$$\Delta x = \int dx$$

Chain rule

$$\frac{dz}{dx} = \frac{dz}{dv}\frac{dy}{dx}$$

Entropy

$$S = k_B \ln \Omega$$

Definition of temperature, pressure, and chemical potential

$$\begin{split} &\frac{1}{T} \equiv \left(\frac{dS}{dU}\right)_{V,N} \\ &\frac{p}{T} \equiv \left(\frac{dS}{dV}\right)_{U,N} \\ &\frac{\mu}{T} \equiv -\left(\frac{dS}{dN}\right)_{U,V} \end{split}$$

Heat capacity

Always true $C \equiv \frac{dQ}{dT}$ Constant volume $C_V = \frac{dU}{dT}$ Constant pressure $C_p = \frac{dU}{dT} + p\frac{dV}{dT}$

Heat conduction

$$q = -k \frac{T_2 - T_1}{d}$$

Combine heat conductivity k same as electrical conductivity.

Ideal gas

Equation of state

$$pV = NkT$$

Isothermal processes

$$p = \frac{NkT}{V}$$

Adiabatic processes

$$p=\frac{C}{V\gamma},$$

C constant, $\gamma = \frac{2}{N_{DOF}} + 1$ Kinetic ideal gas assumption:

$$\frac{1}{2}m\langle v^2\rangle = \frac{3}{2}kT$$

Equipartition

$$U = \frac{N_{DOF}}{2}NkT + \text{constant}$$

Translational and rotational motion counts as 1 degree of freedom each, vibrational counts as 2 degrees of freedom each.

Thermodynamic processes

First law of thermodynamics (division into work and heat)

$$dU = dQ - pdV$$

Second law of thermodynamics

$$\int_{S_i}^{S_f} dS \ge 0$$

Fundamental relation of thermodynamics

$$dS = \frac{1}{T}dU + \frac{p}{T}dV - \frac{\mu}{T}dN$$

At constant number,

$$dS = \frac{dQ}{T} = \frac{C}{T}dT$$

Typical processes:

Isothermal T constant reversible Isobaric p constant irreversible Isochoric V constant irreversible Adiabatic Q = 0 reversible Maximum Carnot efficiency between two reservoirs at T_H , T_C

$$\frac{W}{Q_H} \leq 1 - \frac{T_C}{T_H}$$

Coefficient of performance

- Refrigeration: Q_C/W
- Heat pump: Q_H/W

Boltzmann factors and quantum systems

Boltzmann factor for state *i*

$$f_i = e^{-E_i/kT}$$

Probability of state *i*

$$P(i) = \frac{f_i}{\sum_i f_i}$$

Average internal energy

$$U = \sum_{i} P_{i} E_{i}$$

Heat capacity of a collection of harmonic oscillators with energy separation hf

$$C_V = 3Nk \frac{x^2 e^x}{(e^x - 1)^2}, x = \frac{hf}{kT}$$

Number of ways to distribute q quanta in N oscillators

$$\Omega = \begin{pmatrix} N + q - 1 \\ q \end{pmatrix}$$

Helmholtz free energy (T,V,N)

$$F = U - T_{env}S$$

- Equilibrium occurs at minimum F
- $W_{max} = -\Delta F$

Chemical potential

$$\mu = \left(\frac{dF}{dN}\right)_{T\ V}$$

Solutions

$$\frac{N_{solute}}{N_{solvent}} = Ce^{-\Delta/kT}$$

Semiconductors

$$\frac{N_{conductors}}{N_{atoms}} = Ce^{-\Delta/2kT}$$

Conductivity is proportional to the number of conductors.

Gibbs free energy (T,p,N)

$$G = U - TS + pV = \mu(p, T)N$$

- Equilibrium occurs at minimum G
- $W_{max} = -\Delta G$

Phases and phase transitions

Only exist at fixed pressure and temperature (otherwise coexistence of phases). Lowest $\mu \rightarrow$ equilibrium phase.

Latent heat:

$$L = \Lambda H = T \Lambda S$$

Variation of the chemical potential of phase *X* as a function of pressure and temperature:

$$d\mu_X = \frac{V_X}{N_X} dp - \frac{S_X}{N_X} dT$$

- Number Density: N_X/V_X
- Entropy per particle: S_X/N_X