Useful Formulae

Physical constants

Avagadro's number Boltzmann constant

$$
\begin{array}{ll}
N_{A} & 6.022 \times 10^{23} / \mathrm{mol} \\
k_{B} & 1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& 8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K} \\
R & 8.314 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \\
& 8.206 \times 10^{-2} \mathrm{l} \mathrm{~atm} / \mathrm{mol} \mathrm{~K} \\
& k_{B} N_{A}
\end{array}
$$

Ideal gas constant

Gravity at sea level
g $\quad 9.8 \mathrm{~m} / \mathrm{s}^{2}$
One atmosphere speed of light Planck constant
electron volt electron charge electron mass electron mag moment proton mass proton mag moment neutron mass
$1.013 \times 10^{5} \mathrm{~Pa}\left(\mathrm{~J} / \mathrm{m}^{3}\right)$
c $\quad 2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$h \quad 6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$4.135 \times 10^{-15} \mathrm{eV} \mathrm{s}$
$\hbar \quad 1.054 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$0.658 \times 10^{-15} \mathrm{eV} \mathrm{s}$
$\mathrm{eV} \quad 1.602 \times 10^{-19} \mathrm{~J}$
e $\quad 1.602 \times 10^{-19} \mathrm{C}$
$m_{e} \quad 9.109 \times 10^{-31} \mathrm{~kg}$
$\mu_{e} \quad 9.2848 \times 10^{-24} \mathrm{~J} / T$
$m_{p} \quad 1.673 \times 10^{-27} \mathrm{~kg}$
$\mu_{p} \quad 1.4106 \times 10^{-26} \mathrm{~J} / \mathrm{T}$
$m_{n} \quad 1.675 \times 10^{-27} \mathrm{~kg}$
939.6 MeV/c ${ }^{2}$

Molecular masses

Particle	$\mathrm{g} / \mathrm{mol}$
N_{2}	28
O_{2}	32
He	4
Ar	40
CO_{2}	44
H_{2}	2
Si	28
Ge	73
Cu	64
Al	27

Symbol	meaning
T	Temperature
U	Internal energy
S	Entropy
Ω	Number of equally probable states
C_{V}	Heat capacity at constant volume
C_{p}	Heat capacity at constant pressure
V	Volume
p	Pressure
μ	Chemical potential
N	Number of particles
n	Number of moles of particles $\left(n=N / N_{A}\right)$
$d W_{o n}$	Work on $-p d V$
$d W_{b y}$	Work by $p d V$
H	Enthalpy $U+p V$

Mathematical identities and combinatorics

N distinguishable particles with M possible states each
N indistinguishable particles with M possible states each
Choose q from N options without replacement

$$
\begin{gathered}
M^{N} \\
M^{N} / N! \\
\binom{N}{q}=\frac{N!}{q!(N-q)!}
\end{gathered}
$$

$$
\begin{array}{r}
\ln (A)-\ln (B)=\ln (A / B) \\
e^{A+B}=e^{A} e^{B}
\end{array}
$$

Derivatives and differentials

Thermodynamic derivative notation.

$$
\left(\frac{d S}{d U}\right)_{V, N} \equiv \frac{\partial S(U, V, N)}{\partial U}
$$

Integration to find changes

$$
\Delta x=\int d x
$$

Chain rule

$$
\frac{d z}{d x}=\frac{d z}{d y} \frac{d y}{d x}
$$

Entropy

$$
S=k_{B} \ln \Omega
$$

Definition of temperature, pressure, and chemical potential

$$
\begin{aligned}
\frac{1}{T} & \equiv\left(\frac{d S}{d U}\right)_{V, N} \\
\frac{p}{T} & \equiv\left(\frac{d S}{d V}\right)_{U, N} \\
\frac{\mu}{T} & \equiv-\left(\frac{d S}{d N}\right)_{U, V}
\end{aligned}
$$

Heat capacity

Always true

$$
C \equiv \frac{d Q}{d T}
$$

$C_{V}=\frac{d U}{d T}$
Constant volume

$$
C_{p}=\frac{d U}{d T}+p \frac{d V}{d T}
$$

Heat conduction

$$
q=-k \frac{T_{2}-T_{1}}{d}
$$

Combine heat conductivity k same as electrical conductivity.

Ideal gas

Equation of state

$$
p V=N k T
$$

Isothermal processes

$$
p=\frac{N k T}{V}
$$

Adiabatic processes

$$
p=\frac{C}{V^{\gamma}}
$$

C constant, $\gamma=\frac{2}{N_{D O F}}+1$
Kinetic ideal gas assumption:

$$
\frac{1}{2} m\left\langle v^{2}\right\rangle=\frac{3}{2} k T
$$

Equipartition

$$
U=\frac{N_{D O F}}{2} N k T+\text { constant }
$$

Translational and rotational motion counts as 1 degree of freedom each, vibrational counts as 2 degrees of freedom each.

Thermodynamic processes
First law of thermodynamics (division into work and heat)

$$
d U=d Q-p d V
$$

Second law of thermodynamics

$$
\int_{S_{i}}^{S_{f}} d S \geq 0
$$

Fundamental relation of thermodynamics

$$
d S=\frac{1}{T} d U+\frac{p}{T} d V-\frac{\mu}{T} d N
$$

At constant number,

$$
d S=\frac{d Q}{T}=\frac{C}{T} d T
$$

Typical processes:
Isothermal T constant reversible
Isobaric p constant irreversible
Isochoric V constant irreversible
Adiabatic $\quad Q=0 \quad$ reversible
Maximum Carnot efficiency between two reservoirs at T_{H}, T_{C}

$$
\frac{W}{Q_{H}} \leq 1-\frac{T_{C}}{T_{H}}
$$

Coefficient of performance

- Refrigeration: Q_{C} / W
- Heat pump: Q_{H} / W

Boltzmann factors and quantum systems Boltzmann factor for state i

$$
f_{i}=e^{-E_{i} / k T}
$$

Probability of state i

$$
P(i)=\frac{f_{i}}{\sum_{j} f_{j}}
$$

Average internal energy

$$
U=\sum_{i} P_{i} E_{i}
$$

Heat capacity of a collection of harmonic oscillators with energy separation $h f$

$$
C_{V}=3 N k \frac{x^{2} e^{x}}{\left(e^{x}-1\right)^{2}}, x=\frac{h f}{k T}
$$

Number of ways to distribute q quanta in N oscillators

$$
\Omega=\binom{N+q-1}{q}
$$

Helmholtz free energy ($\mathrm{T}, \mathrm{V}, \mathrm{N}$)

$$
F=U-T_{e n v} S
$$

- Equilibrium occurs at minimum F
- $W_{\max }=-\Delta F$

Chemical potential

$$
\mu=\left(\frac{d F}{d N}\right)_{T, V}
$$

Solutions

$$
\frac{N_{\text {solute }}}{N_{\text {solvent }}}=C e^{-\Delta / k T}
$$

Semiconductors

$$
\frac{N_{\text {conductors }}}{N_{\text {atoms }}}=C e^{-\Delta / 2 k T}
$$

Conductivity is proportional to the number of conductors.
Gibbs free energy ($\mathrm{T}, \mathrm{p}, \mathrm{N}$)

$$
G=U-T S+p V=\mu(p, T) N
$$

- Equilibrium occurs at minimum G
- $W_{\max }=-\Delta G$

Phases and phase transitions

Only exist at fixed pressure and temperature (otherwise coexistence of phases). Lowest $\mu \rightarrow$ equilibrium phase.
Latent heat:

$$
L=\Delta H=T \Delta S
$$

Variation of the chemical potential of phase X as a function of pressure and temperature:

$$
d \mu_{X}=\frac{V_{X}}{N_{X}} d p-\frac{S_{X}}{N_{X}} d T
$$

- Number Density: N_{X} / V_{X}
- Entropy per particle: S_{X} / N_{X}

