
Making Sense of the Equation Sheet 

Physics 213 

Fundamental Laws/Principles: 

First Law: 𝑑𝑈 = 𝑑𝑄 + 𝑑𝑊 

Energy is conserved—the change in the internal energy of a system is equal to the heat that flows into or 
out of the system plus the work done on or by the system. 

Second Law: 𝑑𝜎 𝑑𝑡 ≥ 0 

As a system comes to equilibrium, the entropy of the system plus the environment always increases. In 
equilibrium, the total equilibrium is maximized and does not change in time. 

Dimensionless entropy: 𝜎(𝐴) = 𝑙𝑛  Ω(A),      Ω(A) = 𝑒! ! ,      𝑃(𝐴) ∝ Ω(𝐴)  

Ω(A) = number of microstates corresponding to the macrostate 𝐴, 𝑃 = probability of observing the 
macrostate 𝐴. 

Classical equipartition: Every quadratic degree of freedom has an on average !
!
  𝑘𝑇 of thermal energy. 

This is true provided the characteristic thermal energy scale 𝑘𝑇 ≫ energy level spacing (e.g., 𝑘𝑇 ≫ 𝜖, 
where 𝜖 is the harmonic oscillator level spacing.) Translational motion persists to zero temperature, there-
fore equipartition applies at all temperatures.  For example, if we consider the motion of the nuclei in a 
solid, each acts like a mass on springs to each of it’s nearest neighbors, i.e., 3 harmonic oscillators à U = 
3NkT [=N atoms x (3 directions) x (kT/2 for KE + kT/2 for potential energy)] 

Entropy and Temperature: 

Entropy with dimensions of J/K: 𝑆 = 𝑘𝜎 = 𝑘  𝑙𝑛Ω  

General definition of temperature:  !
!
= !"

!" !,!
 

Anytime two systems exchange energy (keeping the volume and the number of each system constant) 
their temperatures become equal; this maximizes the total entropy. 

Heat capacity: C = dQ/dT (thermal energy needed to increase the temperature of a system by dT).  

Two common cases:           
 volume is kept constant, in which case no work is done (since dW = pdV), and dQ=dU.  
 pressure is kept constant, so more energy is needed to raise T (since some goes into work). 

 For a typical solid/liquid these are essentially the same, since volume changes little with T. 

The heat capacity depends on how much material there is, and also a property of the type of material = 
“specific heat” c: C = mc (here c is given as the specific heat per mass; another option is ‘per mole’) 



α-Ideal Gases: α = ½ the number of degrees of freedom (d.o.f.) 

Examples: Monatomic gas: 3 translational d.o.f. (α = 3/2)      
  Diatomic gas: 3 translational d.o.f. + 2 rotational d.o.f. (α = 5/2) 

Work done by a gas in an isothermal expansion (T = constant): 𝑊!" = 𝑁𝑘𝑇  ln  (𝑉! 𝑉!) 

Relations for an adiabatic process (Q = 0): 

𝑉𝑇! = 𝑐𝑜𝑛𝑠𝑡.     𝑃𝑉! = 𝑐𝑜𝑛𝑠𝑡.    𝛾 =    (𝛼 + 1) 𝛼   

Work done in an adiabatic process:  𝑊!" = Δ𝑈 = 𝛼𝑁𝑘   𝑇! − 𝑇! = 𝛼(𝑃!𝑉! − 𝑃!𝑉!) 

General expression for the change in entropy when both volume and temperature vary (but assuming the 
heat capacity is constant over the range of temperatures considered): 

Δ𝑆 = 𝐶! ln 𝑇! 𝑇! + 𝑁𝑘  ln  (𝑉! 𝑉!) 

Processes, Heat engines 

If we put heat into a system, that can either increase the thermal energy ΔU, and/or allow the system to do 
work: Q = ΔU +Wby 

For a quasi-static (i.e., essentially in equilibrium throughout) process, dS = dQ/T. We can get the total 
change in entropy by integrating this. IF the heat capacity doesn’t depend on T, then ΔS = Cln(Tf/Ti) 

We can allow temperature flow from a hot reservoir into a cold one to power a heat engine. The work out 
is then given by Wout = Qhot – Qcold, where Qhot (Qcold) is the energy removed from (deposited into) the hot 
(cold) reservoir on each cycle of the engine. 

The efficiency is defined as the work out divided by heat in: ϵ = !!"#
!!!"

= 1 −   !!"#$
!!!"

 

This is true for ANY heat engine.   
If we have a “Carnot” engine, using only reversible processes (isothermal and adiabatic), then   
ΔStot = ΔShot + ΔScold = -Qhot/Thot +Qcold/Tcold = 0 à Qcold/Qhot = Tcold/Thot so ε = 1 – Tcold/Thot. 

 

Diffusion: 

This process can be modeled as a random walk. The rms displacement from the starting location is then 
proportional to the square root of the number of steps taken (which in turn is proportional to the total time 
for diffusion to occur).  For particles diffusing in 3 dimensions, we have <x2> = 2Dt (this tells about dif-
fusion along a particular direction, e.g. from one surface to another, or from one point to another) and 
<r2> = 6Dt (if we ask about diffusion in all directions, e.g., from the center of a sphere to any point on its 
surface). Here the diffusion constant D = vl/3 = l2/3τ  depends on the average velocity v, mean free path 
between scattering events l, and mean free time between scattering events τ. 



Heat Conduction: 

The rate of heat flow (e.g., in Watts) H is proportional to the cross sectional area A and the heat current 
density J.  The latter varies as the temperature gradient  (~ΔT/Δx) and the thermal conductivity κ. We can 
then write H = ΔT/Rth, where the thermal resistance is Rth = d/ κA, is for a slab of thickness d and area A; 
thermal resistances combine just like electrical resistances (e.g., in series or parallel). 

If an object with heat capacity C at initial temperature TA0 is put into contact with a thermal reservoir at 
temperature Tf, the heat flow from the object will just be (TA0 – Tf)/Rth.  However, as the object tempera-
ture becomes closer to Tf, less heat will flow, and the temperature of the object will approach Tf with an 
exponential decay, with decay time constant τ = RthC.  

Spins: 

Binomial distribution:  Applies to probabilistic events with two possible outcomes. Examples include 
coin toss (heads or tails), spins (spin up or spin down), 1-D random walk (step left or step right). If each 
outcome is equally probable, then the number of microstates corresponding to a particular macrostate is 
given by 

Ω 𝑁,𝑁!" =
𝑁!

𝑁!"! 𝑁 − 𝑁!" !
 

where 𝑁 is the number of coin tosses and the macrostate is specified by 𝑁!". When 𝑁 is large, the bino-
mial distribution is approximately given by the Gaussian distribution 

Ω 𝑚 = 2!
2
𝜋𝑁

  𝑒!!!/!! 

Here, 𝑚 = 𝑁!" − 𝑁!"#$. For a 1-D random walk 𝑚 is the displacement away from zero. The probability 
of obtaining a particular macrostate 𝑚 is 𝑃 𝑚 = Ω(𝑚)/Ω!"!, where Ω!"! = 2! is the total number of 
microstates. 

Spins in a magnetic field: In a magnetic field the magnetic energy of a spin with magnetic moment 𝜇 is 
𝐸 = −𝜇 ⋅ 𝐵. The net magnetic moment for N spins is 

𝑀 = 𝑁𝜇(𝑃↑ − 𝑃↓) 

To calculate probabilities from the Boltzmann distribution, use 

𝑃 𝐸 =
𝑑!  𝑒!!/!"

𝑍
 

where Z is the partition function. 

Z: Sum over all states of the Boltzmann factor 𝑒!!!/!" 

                                          𝑍 =    𝑑!  𝑒!!!/!"!  



𝑑! = degeneracy 

For a spin a magnetic field 𝐵: 𝑍 = 𝑒!!"/!" + 𝑒!"/!" 

Probability for the spin to be aligned parallel to the magnetic field: 𝑃↑ =
!!" !"

!
 

Probability that the spin and field are aligned antiparallel:    𝑃↓ =
!!!"/!"

!
 

𝑀 = 𝑁𝜇 tanh
𝜇𝐵
𝑘𝑇

 

High temperature limit: 𝑀 = 𝑁𝜇!𝐵 𝑘𝑇. This relationship is known as the Curie Law. 

 

Simple Harmonic Oscillator (SHO): 

The quantum harmonic oscillator has equally spaced energy levels 𝑈 = 𝑛𝜖, where 𝑛 = 0,1,2,… and the 
energy level spacing is 𝜖 = ℎ𝑓; ℎ = Planck’s constant, and 𝑓 = 𝐾 𝑚 is the classical oscillation fre-
quency. 

The probability of the oscillator being in the nth vibrational level is: 𝑃! =
!!!"/!"

!
 

where 𝑍 =    𝑒!!"/!"!
!!! . This sum converges to 𝑍 = 1 1 − 𝑒!! !" . This gives the following result 

𝑃! = 1 − 𝑒!! !" 𝑒!!! !" 

The average energy is    𝐸 = 𝑛  𝜖  𝑃!!
!!! = !

(!! !"!!)
 

When calculating the entropy associated with having q quanta of energy shared among N oscillators, we 
need to find the number of microstates. The corresponding number of microstates is given by 

Ω =
𝑞 + 𝑁 − 1 !
𝑞! 𝑁 − 1 !

 

 

Counting: 

If we want to calculate the entropy associated with having N particles in M bins, the answer depends on 
whether the bins can hold multiple particles, or only one (“single occupancy”), and whether the particles 
are in principle distinguishable (“distinct”) or not (“identical”, in which case we usually overcount, e.g., 
by N!, so we divide by that).  When there are many more bins than particles (“dilute” case), we can just 
use the simpler ‘unlimited occupancy’ formulas.   

For 𝑁 ≫ 1 use Sterling’s approximation, ln𝑁! ≈ 𝑁 ln𝑁 − 𝑁. 



Equilibrium: 

When we considered two systems that could exchange volume or energy, we found the equilibrium prop-
erties (pressure, density, temperature) by maximizing the combined entropy of both systems. When we 
consider a small system connected to a large reservoir whose temperature is fixed, then it is more conven-
ient to consider the free energy. This is because the free energy deals only with the entropy and internal 
energy of the small system. In equilibrium, the free energy of the system must be a minimum. In contrast, 
the total entropy of the system plus the environment is a maximum. 

Helmholtz  free  energy = 𝐹 = 𝑈!"! − 𝑇!"#  𝑆!"! 

The free energy per particle is the chemical potential: 𝜇 = !"
!" !,!

 

Ideal gas chemical potential: 𝜇 = !"
!" !,!

=   − Δ + 𝑘𝑇 ln !
!!

 

where Δ is the internal energy per particle (here negative, as we’re thinking of some sort of binding ener-
gy), 𝑛 = 𝑁 𝑉 is the density and 𝑛!is the quantum density, i.e., the maximum number of states per vol-

ume, as allowed by quantum mechanics. For a monatomic non-interacting gas we have: 𝑛! =
!!"#$
!!

!/!
 

If, for example, there are also 2 spin states, then we would multiply by 2.  If there also, e.g., rotations or 
vibrations, these would also increase 𝑛! , though we didn’t discuss how to calculate that in detail. In all 
the cases we consider, 𝑛 ≪ 𝑛!, therefore the natural log term in 𝜇 is negative. 

Chemical potential and equilibrium: 

In a reaction involving the creation of different types of particles (examples: interstitial-vacancy pairs and 
electron-hole pairs in semiconductors), the equilibrium condition is given by 

Δ𝑁 !   𝜇!
!

= 0 

where Δ𝑁! refers to the number of particles of type 𝑖 involved in the reaction. As an example, consider the 
chemical reaction 

𝑎𝐴 + 𝑏𝐵   ↔ 𝑐𝐶 

where A, B and C refer to the particle type, and a, b, and c are the number of each type. From the general 
form of the equilibrium condition 

𝑎𝜇! + 𝑏𝜇! = 𝑐𝜇!  

If we treat each species as an ideal gas, liquid, or solid, then  

  !!
!

!!
!   !!

! =   
!!"
!

!!"
!   !!"

!   𝑒!/!", where Δ =   𝑐Δ! − 𝑎Δ! − 𝑏Δ!. 



Phase transitions: 

In phase transitions, the volume between the two different phases is often different, for example consider 
a molecule of water going between the liquid and gas phase. If work is done while reaching equilibrium 
(e.g., to create the extra space needed for the gas, assuming a transition at constant pressure), then it is the 
Gibbs free energy which is minimized. 

Gibbs  free  energy = 𝐺 = 𝑈 − 𝑇𝑆 + 𝑃𝑉 = 𝐹 + 𝑃𝑉 

We can express the Gibbs free energy involving different phases as 

𝐺 = 𝑁!  𝜇! + 𝑁!   𝜇! + 𝑁!  𝜇! 

where the subscripts 𝑠, 𝑙,𝑔  refer to solid, liquid, and gas, respectively. In equilibrium, the phase with the 
lowest chemical potential is the stable phase. By maximizing the number of particles corresponding to the 
phase with the lowest 𝜇, 𝐺 is minimized. 

 

Thermal Radiation 

Power per unit area radiated by a black body (units 𝑊/𝑚!): 𝐽 = 𝜖  𝜎!"   𝑇! 

𝜎!" = Stefan-Boltzmann constant 

𝜖 =   emissivity. 𝜖 = 1 for a perfect black body and is between 0 and 1 for all other materials. 

By thermodynamics arguments, the emissivity of an object must equal its absorbance at each wavelength. 

 

Wien’s displacement law: 𝜆!"#   𝑇 = 0.0029  m ⋅ K – Describes the location of the peak in the black body 
spectrum as a function of temperature.  

 


