
Figure 1: The model for an ideal solution

10 Ideal solutions

Let’s consider the following question: in equilibrium, how much salt can be dissolved into water? The details
here are very complicated; however, the general trends are very simple. Let’s consider the following very
simple model:

1. The change in total energy for moving one salt molecule from a solid to the water is ∆, which is a
currently unknown parameter.

2. Once in the water, the salt molecule occupies the ’space’ of one water molecule. This will change the
entropy, and is called the entropy of mixing.

3. The volume of the water approximately does not change in this process. (this is good if the solution is
dilute)

4. Note also that we are ignoring the fact that NaCl turns into Na+ and Cl− in solution. While this does
matter to get everything perfectly correct, it does not change the basic behavior.

We would like to compute
dGtot

dNS
= Gtot(NS + 1)−Gtot(NS) = 0, (1)

where NS is the number of salt molecules in solution. This equation is true from the definition of the
derivative, and is accurate since there are many molecules. The derivative equals zero in equilibrium, since
we are minimizing the free energy.

Since Gtot = Gw + Gs, where w and s refer to the liquid with salt in it, and the solid salt respectively,
we can reduce Eqn 1 to a quantity that only has differences in it. We reduce the equation to differences
because we don’t know the absolute internal energy of either the liquid or solid, nor do we know the absolute
entropy. Using the fact that G = U − TS + pV , we then get:

Gtot(NS + 1)−Gtot(NS) = (Uw(NS + 1)− Uw(NS) + Us(NS − 1)− Us(NS))︸ ︷︷ ︸
∆

(2)

− T (Sw(NS + 1)− Sw(NS) + Ss(NS − 1)− Ss(NS))︸ ︷︷ ︸
∆S

(3)

+ p (Vw(NS + 1)− Vw(NS) + Vs(NS − 1)− Vs(NS))︸ ︷︷ ︸
∆V

. (4)

This may look intimidating, but from our assumptions we already know most of these terms. The −1 in the
s terms is because when we add a salt molecule from the solid to the liquid, we lose one molecule from the
solid (and gain one in the liquid). From assumption 1, we know that the first term involving the internal
energy we have defined as ∆. The third term involving the volume is zero from our assumption 3. That
leaves us with the second term; the entropy of mixing.

To compute the entropy of mixing, we want to know how much entropy increases when adding a salt
molecule to the water. We assume that the solid does not change its entropy very much. Then we need to
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compute Sw(NS + 1)−Sw(NS). If there are NS salt molecules in the water, and each salt molecule displaces
one water molecule, then the number of ways to add them is:

Ωw(NS) =

(
Nw + NS

NS

)
. (5)

That is, we have Nw + NS possible positions and we choose NS of them to be salt molecules. Then,

Sw(NS + 1)− Sw(NS) = k ln

(
Ωw(NS + 1)

Ωw(NS)

)
= k ln

(
(NS + Nw + 1)!

(NS + 1)!Nw!

NS !Nw!

(NS + Nw)!

)
(6)

Canceling out all the like terms, we get

Sw(NS + 1)− Sw(NS) = k ln

(
NS + Nw + 1

NS + 1

)
' k ln

Nw

NS
. (7)

The last approximation is good because the number of water molecules is much much larger than the number
of salt molecules, and both Nw and NS are much much larger than 1.

Finally, we can put all these pieces together to get the equilibrium NS :

∆− kT ln
Nw

NS
= 0. (8)

Solving this for the concentration NS

Nw
:

NS

Nw
= e−

∆
kT . (9)

In reality, we can describe most solutions by making a small modification to this equation:

NS

Nw
= nse

− ∆
kT , (10)

where ns accounts for the fact that we might be able to fit more or less salt molecules into the solution than
the number of water molecules.

10.1 Free energy versus internal energy

In Fig 2, we have the free energy, entropy and internal energy versus concentration NS

Nw
for an ideal solution.

The equilibrium concentration is the minimum in free energy. Note that the internal energy increases with the
concentration, while the entropy also increases, which makes the −TS term decrease. The minimum in free
energy occurs as a result of competition between those two terms. Note that if you increase the temperature,
the entropy term becomes more important and will push the minimum to higher concentration. On the other
hand, lowering the temperature decreases the importance of the entropy and pushes the minimum to lower
concentration. At zero temperature, the equilibrium concentration is zero.

The reason that higher temperature tends to favor higher entropy macrostates is that there is an envi-
ronment at that temperature. The environment can increase total entropy by adding heat to the system, if
it increases the entropy of the system enough. The breaking point is whether adding a given amount of heat
Q increases the entropy of the system by more than Q/T , which is how much the entropy of the environment
decreases when heat is transferred. As the temperature of the environment increases, the breaking point
gets lower, and so the environment is more willing to give up heat to increase the entropy of the system.
The free energy nicely captures all those effects!

Optional note: To compute the entropy and internal energy, you must integrate the derivatives:

U =

∫
dU

dNS
dNS =

∫
∆dNS = ∆NS , (11)
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Figure 2: Free energy for ∆ = 0.12 eV, T = 300 K, and Nw = 6 × 1023. The minimum free energy is the
equilibrium concentration, and is formed through a competition between internal energy and entropy.

and

S = −k
∫

ln
NS

Nw
dNS = −k

(
NS ln

NS

Nw
−NS

)
. (12)

We assume the pV term does not change with concentration. There is an arbitrary constant in both integrals
that we set to zero; only differences matter.

10.2 Arrhenius plots

A common way of analyzing systems is to take the log of Eqn 10:

ln

(
NS

Nw

)
= lnns −

∆

kT
. (13)

This equation says that if we plot the log of the concentration versus 1
kT , then the slope is −∆. In this way,

we can use bulk measurements to estimate the microscopic energy of a solute model. This also explains why
one can dissolve more solute into a liquid when the liquid is hot. This, for example, is how sugar syrups are
made.
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