
Table 1: Resistivity of a few materials at different temperatures
Material Temperature (K) resistivity
Copper 60 9.7×10−10 Ωm
Copper 273 K 1.5 ×10−8 Ωm
Copper 400 K 2.4 ×10−8 Ωm
Silicon 298 K 0.5 Ω m
Silicon 1375 K 9.1 ×10−5 Ωm

13 Semiconductors

13.1 Phenomenology of semiconductors

We can classify most materials as insulating, which means that they do not conduct electricity very well1,
or conducting, in which the electrons are free to move around easily and electricity can be conducted easily.
The main difference between them is that a conductor has lower electrical resistivity at lower temperatures,
while the insulator has higher electrical resistivity at lower temperatures.

In Table 1 are some values of electrical resistivity versus temperature for a semiconductor (silicon)
and a conductor (copper). There are both quantitative and qualitative differences between these values of
resistivity. First, note that near room temperature, the silicon is a very poor conductor, with a resistivity
about 108 larger than copper. However, raising the temperature of silicon lowers the resistivity, while raising
the temperature of copper only slightly increases the resistivity. Despite the name, a semiconductor is a
type of insulator that happens to conduct electricity a little bit at room temperature. In this section we will
understand why the semiconductor behaves in the way that it does.

13.2 Simple model of a semiconductor.

This is not a very realistic model of semiconductors, but it captures the basic behavior of them. If you take
classes that specialize on semiconductors then you will use quantum mechanics to make more sophisticated
models of them. In this chapter, we will model of semiconductors as a bunch of atoms, each of which has
two possible states for electrons. The lower energy state is “filled,” which means that in the lowest energy
state it has an electron in it. The rule is that electrons can only move to unoccupied states, and there is
only one electron allowed per state.

If an electron moves to an unoccupied energy state (called the conduction states, or conduction band)
then there’s room for it to move around. On the other hand, if the electron is removed from the filled level
(called the valence states, or valence band) then the ’hole’ can move around as well through collective motion
of the electrons in the filled level.

The conductivity is proportional to the number of electrons in the conduction band and holes in the
valence band of the material. These come from the metal which is The number of electrons ne that migrate
from the metal is:

ne = NP (e), (1)

where P (e) is the probability for an electron to migrate from the metal to a single atom. We will define the
chemical potential of electrons in the metal as µ, so the probability of atom i taking on an electron is:

P (e) =
1

Z
e−(Ec−µ)/kT , (2)

where N is the number of atoms.
We also have to consider another process: an electron migrating from the atom to the metal to create a

hole. The number of holes nh is:
nh = NP (h), (3)

1With enough voltage, anything can be a conductor!
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Figure 1: A sketch of the model we are using to understand semiconductors. Each atom in the semiconductor
has a low energy state with energy Ev that is filled with an electron (with probability close to 1, similar to
our two-state systems!) at low temperature, and a high energy state with energy Ec that is not filled at low
temperature. Nearby there is a metal which can either absorb electrons creating a hole, or donate electrons,
creating an electron in the conduction states. The gap is the energy difference Ec − Ev.
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and similarly for atom i losing an electron:

P (h) =
1

Z
e−(µ−Ev)/kT (4)

13.3 Neutral limit

Our previous equations are perfectly fine to use; however, they are not intrinsic to the semiconductor, since
they depend on the type of metal attached to it through µ. In most applications, the amount of current
we send through the semiconductor is very small compared to the number of atoms in the material itself.
In that situation, we can very accurately say that the number of holes and electrons are equal because the
system is neutral; that is, nh = ne.

Using neutrality,

ne = nh =
√
nenh =

1

Z
e−(Ec−µ)/2kT e−(µ−Ev)/2kT . (5)

Combining the exponentials,

ne = nh =
1

Z
e−(Ec−Ev)/2kT , (6)

which only depends on the properties of the semiconductor; in particular the so-called gap ∆ = Ec − Ev,
the energy difference between the conduction and valence bands.

Since the conductivity is proportional to the density of electrons ne, the resistivity ρ is given as follows:

ρ ∝ 1/ne ∝ e∆/2kT . (7)

Therefore the resistivity is
ρ = Ce∆/2kT , (8)

where C is a constant that is determined by the specifics of the material. This constant, with some work, is
computable by more advanced methods. Note the factor of 2 here, as opposed to a standard Boltzmann-like
relationship.

This explains the observation we made at the beginning of the chapter; that semiconductors have the
opposite behavior of resistivity with respect to temperature as compared to conductors. Conductors (or
metals) have zero gap, so the model we made does not apply to them. For a conductor, temperature inhibits
electrical conductivity because the vibrations in the atoms get in the way of the electrons’ motion. On the
other hand, for a semiconductor, increased temperature is helpful to conductivity, because the electrons are
helped into the conduction band by the temperature fluctuations.

The gap is one of the primary ways that we characterize semiconductors. Depending on how exactly you
would like the material to behave, you may select a different gap. For example, silicon which has a gap of 1.1
eV works quite well at room temperature; however, at very high temperatures it is essentially a conductor of
electricity and therefore not typically useful. So at high temperatures or high voltages, you would probably
want to use a larger gap material like GaN with a gap of 3.4 eV.

13.4 Measuring the gap: Arrhenius plots of semiconductors

Taking the logarithm of Eqn 8,

ln ρ = lnC +
∆

2kT
(9)

Therefore, when plotting the logarithm of the resistivity versus 1/(2kT ), the slope is the gap. This is a quick
and easy way to estimate the gap of semiconductors.
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Figure 2: Arrhenius plots for materials with different gaps. The larger gap material has a larger slope on
this plot. Note that we are actually plotting 1/2kT on the x-axis.
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