
3 Entropy, microstates, macrostates, and the second law

• We describe a thermodynamic system using macrostates (volume, temperature, energy, number of
particles)

• A complete (classical mechanics) description would specify the position and velocity of every single
particle which is called the microstate. However, in a solid material this is not possible to do.

• Entropy tells us how much information we throw away when we use a macrostate. S = k ln Ω.

• Entropy is related to the probability of the macrostate; the highest entropy macrostate is the most
probable by a very large margin.

• The above leads to the second law of thermodynamics: Sf − Si ≥ 0 for all processes, where Si is the
initial entropy and Sf is the final entropy.

3.1 Microstates and macrostates

We have already discussed macrostate variables in this course. They are collective quantities about an
object, such as the total volume, internal energy, pressure, and temperature. On the other hand, to specify
the microstates of a system, one needs to specify all the positions and velocities of all the atoms in the
object. Obviously this is far too much information to track for any real system explicitly. Instead, we
just want to keep count of how much information we lose by using macrostate variables only. Entropy is a
measure of the information that we lose when we describe the system in terms of macrostate variables.

3.2 Definition of entropy

For example, suppose we describe our system in terms of the internal energy, volume, and number of particles
U, V,N . Then the number of microstates for that value of U, V,N is called Ω(U, V,N), and the entropy is
defined1 as

S(U, V,N) = kB ln Ω(U, V,N). (1)

(aside) You might reasonably ask why this particular definition. Entropy is additive with this definition,
while Ω is multiplicative (two dice have 36 total states, not 6). By making it ln instead of some other base,
the definitions of pressure and temperature which we will see later will work better. Otherwise there would
be stray values around when derivatives and integrals are taken. So entropy is defined this way so that it
has nice properties that we will explore throughout this course.

3.3 Entropy of flipping coins

Let’s examine a toy system to get a handle on the concept of entropy. We all have an intuitive understanding
of entropy already. For example, if you walked into a room and someone told you that they flipped a coin
1000 times and got 1000 heads, you would be understandably skeptical. However, if they said they got 522
heads, you might believe them.2 This is an intuitive understanding of entropy! There are many more ways
that one could get 522 heads in 1000 flips than 1000 heads in 1000 flips, and so it is more likely, and therefore
higher entropy. Let’s now analyze this situation in the language of thermodynamics.

First things first, we should identify the microstates and macrostates. For a sequence of N coin flips,
the microstate is the particular sequence. For example, for N = 5, the sequence HHTHT is a different
microstate than the sequence HTHHT, even though they have the same number of heads. The macrostate
in our case will be the fraction of flips that came up heads. Both of the above microstates “belong” to the
same macrostate of NH = 3, N = 5, or FH = 3/5.

1Technically this is the statistical mechanics definition of entropy. Next time we will get to the thermodynamical definition
of entropy. I think that the statistical mechanics definition makes a lot more sense!

2Other than questioning why they are flipping coins in a room by themselves!
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Figure 1: The probability of getting K outcomes out of N total events is given by P (N,K) =
(

N
NH

)
PK(1−

P )N−K , where P is the probability of K. For our coin toss the odds of getting a heads is 50%, therefore
P = 1

2 and we write K = NH . The plot shows P (N,NH) vs FT = NH/N for different values of N; the
distribution of results gets closer and closer to the highest probability result as N increases.

To construct the entropy S(NH , N), we need to be able to compute Ω(NH , N), how many ways one could
flip NH heads with N flips. This is given by the binomial coefficient

Ω(NH , N) =

(
N

NH

)
=

N !

NH !(N −NH)!
. (2)

Often this function is available on calculators as a “choose” function. It is also available in Python as
scipy.special.binom.

In Fig 3.3, we show the number of coin toss sequences (microstates) with a given fraction of heads FH

(macrostate). The number of outcomes with FH near 0.5 grows very quickly as N increases. As N → ∞,
with almost probability 1, the fraction of heads is 0.5. Therefore, for very large numbers of flips, the most
likely macrostate is just the one that occurs.

Some physical systems actually do act as if they are coin flips. In the case of magnets, the magnetism is
given by very small magnetic moments called spins3 which align at low temperatures to create ferromagnets.
In this case, whether the spin is pointed up or down is equivalent to the coin flips.

3.4 Entropy of free particles in a volume

Consider the number of microstates Ω(U, V, 1) of a single atom in a volume V and total energy U . The atom
could be in any location in the volume, and have velocity pointing in an direction in 3D. We will not try
to compute Ω exactly, but for one atom, it is proportional to the volume: Ω(U, V, 1) = g(U, 1)V , where g is
an unknown function of U and N . Now, if there are N particles that we can approximate as if they don’t
interact (i.e., an ideal gas!),

Ω(U, V,N) = (g(U,N)V )N (3)

3We will explore this later in the Boltzmann sections!
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and
S(U, V,N) = k ln Ω = Nk lnV + Nk ln g. (4)

3.5 Second law of thermodynamics

Given the definition of entropy in terms of the number of states, the second law becomes almost trivial. It
simply says that once there are many particles in a system, the most likely value of macrostate variables is
the one that happens. This is not because the other values are impossible (they are technically not), but
because the most likely values are so much more likely that it is effectively impossible to see the unlikely
occurrence. Imagine flipping 1023 coins; the fraction fH = NH/N is extremely unlikely to be very far from
0.5. Thus, the second law of thermodynamics: in an isolated system, the entropy always stays the same
or increases, or

Sf − Si ≥ 0, (5)

where Sf is the final entropy and Si is the initial entropy.

3.6 Internal equilibrium

For almost all cases in this course (we will let you know if this is not the case), we will consider systems
internally in equilibrium. Internal equilibrium means that for the given macrostate variables (often U, V,N
for example) entropy has been maximized already, keeping those macrostate variables fixed. That means
that the objects, if left to their own devices, will not spontaneously undergo any changes. Most processes
that we will consider in this course will be quasistatic processes, which means that the processes are slow
enough that objects are in internal equilibrium the entire time. If a system is in internal equilibrium, we can
use all of our equilibrium relations like the ideal gas law.
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