
Figure 1: Entropy, energy, heat capacity, and temperature are all connected to one another through deriva-
tives and integrals.

4 Entropy of physical systems

• Be able to compute the entropy change as two bricks come into equilibrium.

• Definition of temperature in terms of entropy: 1
T = dS

dU

• Pressure in terms of entropy: p
T = dS

dV

• Fundamental relation: dS = dQ
T

• Heat capacity and entropy: ∆S =
∫

C
T dT

4.1 The “two bricks” model

For this section, we will consider a very simple model of two bricks that are in internal equilibrium, but
different temperatures. It doesn’t matter that they are bricks! They could be any objects. We will explore
how maximizing entropy leads us to a thermodynamic definition of temperature, and compute how much
entropy increases as the two bricks come into equilibrium with each other.

4.2 Definition of temperature

The total entropy of the two-brick system is

Stot = S1(U1) + S2(U2). (1)
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We are assuming that the volume and number of particles in the bricks stays the same, so we are only
going to consider the dependence on internal energy. As we determined in the previous section, spontaneous
processes stop happening when the entropy is maximized. Also due to conservation of energy, we know that
U1 + U2 = C, where C is some constant.

To maximize entropy, we take the derivative and set it equal to zero:

dS1

dU1
+

dS2

dU1
= 0. (2)

Note that we had to take the derivative of the entropy of both bricks with respect to U1. However, we have
the function S(U2). Using conservation of energy, we can find that dU1

dU2
= −1. Using the chain rule, we have

dS2

dU1
=

dS2

dU2

dU2

dU1
= −dS2

dU2
. (3)

This makes some sense in retrospect; an increase in U1 is a decrease in U2, so the derivatives should be
opposite sign.

So finally we can find the equilibrium relation:

dS1

dU1
=

dS2

dU2
. (4)

Note that entropy has units of J/K and internal energy has units of J, so the derivative has units of 1/K.
This is very suggestive, and indeed it turns out that if you define

dS1

dU1
≡ 1

T1
, (5)

then we get the same behavior as we noted empirically in this class–energy spontaneously flows from high
temperature to low temperature until the two bricks are the same temperature.

The reason that maximization of entropy is such an important concept is that it allows us to derive many
other equilibrium conditions like T1 = T2.

4.3 Fundamental relation for constant volume

Now we’ll derive a very useful relationship for the change in entropy during a process. If during the process,
everything is held constant other than the internal energy U , then using the chain rule:

dS

dt
=

dS

dU

dU

dt
=

1

T

dU

dt
. (6)

Here we used a time derivative to give a sense of a process, but often in thermodynamics we are lazy and
instead write the same equation as

dS =
1

T
dU (7)

4.4 Definition of pressure in terms of entropy

We can define pressure similarly to temperature. Consider a chamber with a movable membrane as noted
in Fig 4.4. We can do the same trick as with energy to get

dS1

dV1
=

dS2

dV2
. (8)

The units of dS
dV are J/K m3, which doesn’t look like much of anything, but recall that J = N m, which

means the units are also N/m2 K. Pressure has units of force per area, and temperature has units of Kelvin.
So one might guess that

dS

dV
≡ p

T
(9)

in analogy to temperature and energy.
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Figure 2: Consider a chamber with a free-moving partition between its two sides. The volume of each side
changes as the partition slides back and forth. This system is in equilibrium when the wall between the two
sides stops moving, or (equivalently) when the pressure on one side is equal to the pressure on the other.
This condition maximizes the total entropy.

4.5 Fundamental relation for changing volume and energy

Now we can compute the change in entropy for any quasistatic process (even if both pressure and volume
are changing) by using the equivalent of the chain rule for multiple dimensions:

dS =
1

T
dU +

p

T
dV =

1

T
dQ, (10)

where we used the first law to substitute dQ = dU+pdV . This is the most general version of the fundamental
relation, so long as the number of particles in the system is not changing. This was actually the original
definition of entropy when thermodynamics was being developed. In the modern understanding, this relation
is a result of the second law of thermodynamics, the definitions of temperature and pressure in terms of
entropy, and some calculus.

4.6 Relationship between heat capacity and entropy

As we’ve mentioned before, it is often very difficult to measure the total entropy and total internal energy
of an object. It actually is very easy to measure the heat capacity; simply transfer a known amount of heat
Q into the object, and measure how much the temperature changes. Then C = dQ

dT '
Q

∆T , if the change in
temperature is small enough. We can then compute the entropy change as follows:

∆S =

∫
dS =

∫
1

T
dQ. (11)

Remember that the temperature T changes as we put heat into the material, though, so we cannot just pull
the temperature out of the integral. We have to either change our integration variable so we are integrating
over T , or write T as a function of Q. The easier path is to change the integration variable from Q to T .
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We do that using the definition of heat capacity: C = dQ
dT , so dQ = CdT . Then

∆S =

∫ Tf

Ti

C

T
dT. (12)

Keep in mind that sometimes the heat capacity can depend on temperature! If it does then you will need
to include that dependence when integrating.
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