
7 Thermodynamic cycles: Engines

• You should be able to compute net work done over a thermodynamic cycle

• Understand the concept of a heat bath and an abstract heat engine

• Carnot efficiency, and how it relates to an engine that produces work from heat flow and also how it
affects the creation of temperature differences using work.

• Understand the relationship between entropy and efficiency

7.1 Constructing a simple engine out of thermodynamic cycles

The basic idea of an engine is to construct a sequence of thermodynamic process such that net work is done.
For concreteness, we will consider an ideal gas that is inside a cylinder. Imagine that we can heat and cool
the gas by putting the cylinder in either a hot environment (could be as simple as boiling water) or a cold
environment (could be ice water for example). We idealize both environments as being so large compared
to the piston that their temperature doesn’t change when we heat or cool the cylinder. Such systems are
typically called reservoirs or baths. Imagine that we can also either lock the piston in place so that the
volume cannot change (isochoric process) or we can allow the piston to move so that the volume can change
but at a fixed pressure (isobaric process).

For a very simple example of this, consider the following set of processes, done :

1. Starting at p1, V1, allow the piston to move, and heat the gas. The volume will increase, and we can
use the force from the piston to push something and do some work.1

2. Starting at p2 = p1, V2 > V1, fix the piston’s position and cool the gas down by putting it in the ice
bath. Now the pressure will decrease but no work is done since the volume doesn’t change. Heat flows
from the piston to the ice water here.

3. Starting at p3 ̸= p2, V3 = V2, keeping it in the ice bath, apply a force to the piston until its volume is
the original one V1. This requires us to do work on the gas.

4. Starting at p4 = p3, V4 = V1, fix the piston in place and put the piston back in the boiling water. Since
the volume is fixed, the pressure will increase back to p1 and the gas has ended up where we started.
No work is done because the volume doesn’t change. Heat flows from the boiling water to the piston
here.

We can count up how much work was done by the gas during this whole cycle. In step 1, the gas expanded
at a constant pressure p2, so the work done was p2(V2 − V1). In Step 3, we compressed the gas back to its
original volume at a lower temperature, so the work on the gas was p3(V2 − V1). Since p2 > p3, the total
work done by the gas was

Wby = p2(V2 − V1)− p3(V2 − V1) = (p2 − p3)(V2 − V1). (1)

The energy for the work was gotten by transferring heat from the hot reservoir (the boiling water) to the
cold reservoir (the ice water). Note that if the temperature of the reservoirs were the same, then it would
not be possible to get work out of the setup. It’s very important that heat spontaneously would move from
one reservoir to another. We are extracting some of that heat to repurpose into work. One might consider
the efficiency of the engine as follows:

ϵ =
Wby

QH
, (2)

where Wby is the work done in the cycle and Q is the heat transferred from the hot reservoir.

1In a car for example it might turn a crank that turns the wheels.
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Figure 1: (above) p − −V diagram of the thermodynamic cycle in the text 7.1. (below) A diagram of how
each process in the cycle might be impelented.
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Figure 2: An abstract diagram of a heat engine. The engine uses the energy from heat flow from the hot
reservoir to create net work. Waste heat energy is dumped into the cold reservoir.

The idealized engine presented here is not very practical; in reality the gas is typically transported in
pipes, rather than moving a piston back and forth. As we will discover, it is also not that efficient. In the
next section, we will compute how efficient the engine could be while still not violating the second law of
thermodynamics.

7.2 Carnot efficiency

The Carnot efficiency is an upper limit on the efficiency attainable. Consider the abstract picture of an
engine in Fig ??. Over the engine cycle, some heat flows from the hot reservoir into the engine, some of that
heat energy is turned into work, and finally some heat flows into the cold reservoir.

There are two main equations here. Energy conservation:

QH = Wby +QC , (3)

and entropy change:

∆Stotal = −QH

TH
+

QC

TC
≥ 0 (4)

The entropy of the hot reservoir goes down, but the entropy of the cold reservoir must go up at least as
much, so

QC

TC
≥ QH

TH
(5)

Substituting Eqn 3 into Eqn 5 and rearranging some terms, you can get

ϵ =
Wby

QH
≤ 1− TC

TH
, (6)

which is called the Carnot efficiency.
There are a few assumptions in the Carnot efficiency calculation: the engine itself is perfect, so it does

not increase entropy at all. This must mean it is made up only of reversible processes. The engine we
designed in the previous section is not perfect! Secondly, the hot and cold reservoirs are large enough that
their temperatures do not change; then ∆S =

∫
dQ
T = Q

T . Relaxing these assumptions generally makes the
efficiency go down, so the Carnot efficiency remains an upper theoretical bound to any device that tries to
use heat energy flowing between a hot and cold object.

3



Figure 3: An abstract diagram of a heat pump. Here, work is input to draw heat from the cold reservoir
and put it into the hot reservoir. It is exactly the reverse of the heat engine with a different figure of merit.

Relationships like Eqn 6 are very important because they tell us what is possible according to the laws
of physics. They also tell us how to get close to a Carnot efficiency; it’s very important that the engine
itself creates as little entropy as possible. This means that the engine should use reversible or near-reversible
processes. The Carnot analysis works not just for engines such as you’d find in a car, but also for power
plants based on nuclear heat sources and even solar cells, which use the sun as a hot reservoir and the Earth
as a cold reservoir.

7.3 Heat pumps and other applications of engine theory

While an engine is a device that turns heat motion into work, you can turn the system around and turn
work into heat motion. This is a heat pump. In the winter, you can use a heat pump to move heat from the
outside to the inside. Even though it’s cold outside, there is still a lot of internal energy available; usually
on Earth it does not get anywhere close to absolute zero. On the other hand, in the summer, you can use
a heat pump to move heat from the house to outside. In each case, you are interested in how much heat
you added or removed from the house compared to how much work you put into it. Practically the work is
usually in the form of electricity running a motor, so the work is essentially the cost of the heating/cooling.
The efficiency is typically called the coefficient of performance. For a heater, the coefficient is

COP =
QH

Won
(7)

while for a refrigerator it is

COP =
QC

Won
. (8)

All of these efficiencies are basically a ratio between what you get and what you pay.
We can use the exact same analysis as we did for the Carnot efficiency, except some of the signs are

reversed (note that Wby = −Won). Energy conservation is

QH = Won +QC . (9)
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Then the second law reads

−QC

TC
+

QH

TH
≥ 0 (10)

or
TH

TC
≥ QH

QC
. (11)

Taking the reciprocal, you get
TC

TH
≤ QC

QH
. (12)

Let’s do the analysis for a heat pump used to heat a home. The coefficient of performance is

QH

Won
=

QH

QH −QC
=

1

1− QC

QH

. (13)

Since QC

QH
≤ TC

TH
, 1− QC

QH
≥ 1− TC

TH
, and finally

QH

Won
≤ 1

1− TC

TH

. (14)

Another way to do this is just to focus on the maximum efficiency possible and not worry about the inequal-
ities. Note also that this is just the reciprocal of the Carnot efficiency, which makes sense!

Consider the use of electricity for heating, such as a space heater you might buy. One Joule of electrical
energy gets turned into one Joule of heat, so the coefficient of performance is exactly 1. Now consider using
a heat pump. Let’s suppose that the outside temperature TC is near freezing, 273 K, and inside it is 298 K.
Then the maximum coefficient of performance is near 12, which means you get 12 J of heat for every one
of electrical energy. In realistic implementations, the coefficient of performance is closer to 4-5 for a high
quality device in the 2020’s. The fact that no one has made a heat pump with such a large coefficient of
performance (12) is further evidence that thermodynamics works.
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