Part 1: Polarization

What we will learn today

 ψ_h photon is polarized in the horizontal direction

 ψ_{v} : photon is polarized in vertical direction

$$\psi = a\psi_v + b\psi_h$$

$$P(v) = \frac{|a|^2}{|a|^2 + |b|^2}$$

Probability of passing through a horizontal filter:

$$P(h) = \frac{|b|^2}{|a|^2 + |b|^2}$$

Polarization as a quantum state

Separate from the position wave function.

Basis states:

 ψ_h photon is polarized in the horizontal direction

 $\psi_{
u}$: photon is polarized in vertical direction

Making horizontally polarized photons

Photons with random polarization, pass through a horizontal filter, all photons that pass through are horizontally polarized.

Suppose we pass horizontally polarized photons through a vertical filter.

What is the probability that the photons will pass through?

- a) 0
- b) 1/4
- , c) ½
- d) ³/₄
- (a) = 1
- e) 1

Representing other polarizations

Measurement rule

Wave function can be a superposition of these two states:

$$\psi = a\psi_v + b\psi_h$$

If we measure vertical polarization, we will get (for example):

$$P(v) = \frac{a^2}{a^2 + b^2}$$

The state after will be

$$\psi_v$$

For a general polarizer, the probability of measuring photons with orientation S is given by

$$P(S) = |S^*.\psi|^2$$

Checkpoint

Light with polarization wave function $\frac{\psi_v + \psi_h}{\sqrt{2}}$ passes through a horizontal filter, then passes through a second horizontal filter.

What's the probability that the photon will be transmitted through both filters?

a) 0

b) ¼

c) ½

d) ¾

e) 1

What's the state once it's passed through the filters?

a) $\frac{\psi_v + \psi_h}{\sqrt{2}}$ b) ψ_v c) ψ_h

Circular polarization

$$\psi = \frac{\psi_v + i\psi_h}{\sqrt{2}}$$
$$\psi = \frac{\psi_v - i\psi_h}{\sqrt{2}}$$

Not going to go too much into this!

Third axis of polarization.

Interaction with linear polarizers: always 50% probability to go through, no matter the orientation.

With circular polarizers: 1 for the same handedness, 0 otherwise.

Part II: Spin

Stern Gerlach Experiment: Explaining Spin

Electronic spin: two options

This is the origin of the two electron/state rule! Each state can get a spin up and spin down

Spin up

 $\pm \frac{1}{2}\hbar$

No matter which axis we choose, we will never measure it with zero angular momentum...

Magnetic moment is:

Angular momentum of an electron is:

$$\mu = \pm \frac{1}{2}g \frac{e\hbar}{2m_e}$$

g = 2.002319304361(2)

Spin down

Measuring spin: Stern Gerlach filter

What is the state of the silver atoms that pass?

a) Random *b)*↑ *c)*↓

What is the state of the silver atoms that pass?

a) Random $b)\frac{1}{\sqrt{2}}(\uparrow+\downarrow)$ $c)\frac{1}{\sqrt{2}}(\uparrow-\downarrow)$

What is the state of the silver atoms in the final stage?

$$a)\frac{1}{\sqrt{2}}(\uparrow+\downarrow)$$

$$b)\frac{1}{\sqrt{2}}(\uparrow-\downarrow)$$

$$c)\uparrow$$

$$d)\downarrow$$

Spin direction	State
\hat{z}	\uparrow
$-\hat{z}$	\downarrow
\hat{x}	$\frac{1}{\sqrt{2}}(\uparrow + \downarrow)$
$-\hat{x}$	$\frac{1}{\sqrt{2}}(\uparrow - \downarrow)$
\hat{y}	$\frac{1}{\sqrt{2}}(\uparrow +i\downarrow)$
$-\hat{y}$	$\frac{1}{\sqrt{2}}(\uparrow -i\downarrow)$

What is the probability that an electron passes through the z-axis filter after it has passed through the x-axis filter?

- a) 0.25
- b) 0.5
- c) 0.75
- d) 1.0

Spin direction	State
\hat{z}	\uparrow
$-\hat{z}$	\downarrow
\hat{x}	$\frac{1}{\sqrt{2}}(\uparrow +\downarrow)$
$-\hat{x}$	$\frac{1}{\sqrt{2}}(\uparrow - \downarrow)$
\hat{y}	$\frac{1}{\sqrt{2}}(\uparrow +i\downarrow)$
$-\hat{y}$	$\frac{1}{\sqrt{2}}(\uparrow -i\downarrow)$

What is the probability that an electron passes through the x-axis filter after it has passed through the x-axis filter?

a) 0.25

b) 0.5

c) 0.75

d) 1.0

Spin direction	State
\hat{z}	\uparrow
$-\hat{z}$	\downarrow
\hat{x}	$\frac{1}{\sqrt{2}}(\uparrow +\downarrow)$
$-\hat{x}$	$\frac{1}{\sqrt{2}}(\uparrow - \downarrow)$
\hat{y}	$\frac{1}{\sqrt{2}}(\uparrow +i\downarrow)$
$-\hat{y}$	$\frac{1}{\sqrt{2}}(\uparrow -i\downarrow)$

What percentage of atoms will make it through?

Spin direction	State
\hat{z}	\uparrow
$-\hat{z}$	\downarrow
\hat{x}	$\frac{1}{\sqrt{2}}(\uparrow +\downarrow)$
$-\hat{x}$	$\frac{1}{\sqrt{2}}(\uparrow - \downarrow)$
\hat{y}	$\frac{1}{\sqrt{2}}(\uparrow +i\downarrow)$
$-\hat{y}$	$\frac{1}{\sqrt{2}}(\uparrow -i\downarrow)$

- a) 100%
- b) 50%
- c) 25%
- d) 12.5%
- u) <u>20</u>
- e) 0%

Spin

$$\psi_{\theta} = \cos \theta \, \psi_{\uparrow} + \sin \theta \, \psi_{\downarrow}$$

What's the probability that we measure the electron to have spin \uparrow ?

- a) $\cos^2 \theta$ b) $\sin^2 \theta$
- c) 0
- u) 1
- d) 1
- e) ½