Your comments/questions/jokes

- Did you do anything exciting during summer so far?
- Started teaching PHYS 214

From last semester:

- Why don't we normally detect destructive interference in everyday life?
- Most of the time, separated wave sources are not coherent, so no interference.
- Calculating frequency? It's so easy it Hertz

Some announcements

- We set up the iClicker system to allow you to use the smartphone app.
- There is only one day on which each exam can be taken. The first exam is on Ihursdav. June 23, and it covers units 1-4 inclusive. Sign upen the CBTF scheduler!
- Can you see each other's responses to the checkpoint? ("student log")
no

Lecture 2: Interference

Today

Interference between two coherent wave-generating sources

Sound from two speakers

Light traveling through two slits

Two perfectly coherent sources have exactly the same phase relationship at all times, e.g. two sinusoidal sources synchronized at the same frequency
"coherent" does not imply "in phase" but "in phase" implies "coherent"

Phasors are graphical tools that represent sinusoidally oscillating quantities

Adding harmonic waves is easier with phasors

$$
\begin{aligned}
& y_{1}(t)=A_{1} \cos \left(\omega t+\varphi_{1}\right) \\
& y_{2}(t)=A_{2} \cos \left(\omega t+\varphi_{2}\right)
\end{aligned}
$$

What is the intensity experienced by the observer?

1. Draw and label the phasor diagram
2. Add the phasors like vectors
3. Find the length of the
4. $\begin{aligned} & \text { resultant } \\ & \text { Take the square: } I=\frac{A^{2}}{2}\end{aligned}$

If $A_{1}=A_{2}$, what is the
intensity at a point
where $\varphi_{1}=0$ and $\varphi_{2}=\pi / 2$?

$$
A_{2}=A_{1}
$$

B) $I=2\left(A_{1}\right)^{2}$

$$
\text { C) } I=\left(\mathrm{A}_{1}\right)^{2}
$$

$$
I=\frac{A_{11_{0}^{2}}^{2}}{2}=\frac{2 A_{1}^{2}}{2}
$$

$y(t)$ has same w as y, and y_{z}, but typically differat phase offset.

Circular waves, two-source interference setup

$y=A \cos (k r-\omega t+\phi)$
Amplitude decreases with r (why must it?) but we ignore that encores conservation
energy spreads out as waves move away, so intensity must be

$$
\begin{aligned}
& y_{1}=A_{1} \cos \left(k r_{1}-\omega t+\phi_{1}\right)^{\text {lower }} \text { at } \\
& y_{2}=A_{2} \cos \left(k r_{2}-\omega t+\phi_{2}\right)^{\text {larger }}
\end{aligned}
$$

$y=y_{1}+y_{2} \quad$ superposition principle
not valid for all types of waves, but for many important causes
(shallow water waves, light, sound, quantum mechanical
matter waves

Ripple tank demo
two-source interference solution

If A_{1} different from A_{2}, the easiest way is with phasors.

1. Draw and label the phasor diagram
2. Add the phasors like vectors
3. Find the length of the resultant
4. Take the square: $I=\frac{A^{2}}{2}$

$$
\begin{gathered}
A_{\text {tot }}^{2}=A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \\
\text { Law of cosines }
\end{gathered}
$$

Intensity is proportional to (that) ${ }^{2}$

$$
\begin{aligned}
& \varphi_{1}=-\left(\phi_{1}+k r_{1}\right) \\
& \varphi_{2}=-\left(\phi_{2}+k r_{2}\right)
\end{aligned}
$$

curly φ VS regular ϕ notation is not Standard!

Two speakers emitting in phase with equal amplitudes

For what values of $r_{1}-r_{2}$ will the waves interfere destructively at the observer?
A) $r_{1}-r_{2}=0, \pm \lambda, \pm 2 \lambda, \ldots$
C) $r_{1}-r_{2}=0, \pm 2 \lambda, \pm 4 \lambda, \ldots$
B) $r_{1}-r_{2}= \pm \frac{\lambda}{2}, \pm \frac{3 \lambda}{2}, \ldots$.
D) $r_{1}-r_{2}= \pm \frac{\lambda}{4}, \pm \frac{\lambda}{2}, \ldots$
for a crest of 1 to meet a trough of 2 , we need $\arg g_{2}-\operatorname{ar} g_{1}=(2 n+1) \pi \quad$ (can odd multiple of $\left.\pi\right)$

$$
\Rightarrow \frac{2 \pi}{\lambda}\left(r_{2}-r_{1}\right)=(2 n+1) \pi \Rightarrow r_{2}-r_{1}=\frac{2 n+1}{2} \lambda=0, \pm \frac{\lambda}{2}, \pm \frac{31}{21}
$$

Checkpoint

An observer is a distance r_{1} and r_{2} respectively from two wave sources that emit in phase.

Which quantity alone would allow you to compute whether the waves interfere destructively or constructively?
a) The wavelength λ. sec previous page!
b) The frequency f
c) The amplitudes A_{1} and A_{2}
d) λ and f
e) λ and A_{1} and A_{2}

construction interference when crest meet, crest or troop meats trough.

What if we change the phase offset?

Combining phasors practice

harmonic waves, same frequency, coherent,
Two speakers, different amplitudes. Same distance, π phase difference at observer.

$$
\left.\begin{array}{l}
\text { What's the phasor diagram? } \\
I_{1}=\frac{A_{1}^{2}}{2} \\
\Rightarrow A_{1}=\sqrt{2 I_{1}}=1 \\
\text { similarly } A_{2}=4
\end{array}\right\} \Rightarrow \begin{aligned}
& \left(180^{\circ}\right. \text { agha between the } \\
& \left.A_{1}-A_{2} \text { phasors }\right)
\end{aligned}
$$

D

Combining phasors practice

harmonic waves, same frequency, coherent,

Combining amplitudes practice

harmonic waves, same frequency, coherent,
Two speakers, different amplitudes.
Same distance, same phase at the source (in phase).

What's the intensity at the observer?
a) $0.5 \mathrm{~W} / \mathrm{m}^{2}$
b) $2.5 \mathrm{~W} / \mathrm{m}^{2}$
c) $3 \mathrm{~W} / \mathrm{m}^{2}$
d) $4.5 \mathrm{~W} / \mathrm{m}^{2}$
e) $9 \mathrm{~W} / \mathrm{m}^{2}$
samephase source and same distance \Rightarrow same arg

$$
\begin{aligned}
& \xrightarrow{\text { Att }} \\
& \xrightarrow{A_{2}} \xrightarrow{A_{1}} \\
& \text { 1.c. Zero } \\
& \text { phase diff. } \\
& A_{1}=\sqrt{2 I_{1}}=1 \quad A_{2}=\sqrt{2 I_{2}}=2 \Rightarrow A_{x_{1}}=3 \mathrm{i}^{2} \text { at observer, } \\
& I_{\text {tot }}=\frac{A_{\text {at }}}{2}=\frac{9}{2}=4.5
\end{aligned}
$$

Intermediate summary

If two waves are same amplitude and same wavelength:

$$
\begin{aligned}
& I=2 A^{2} \cos ^{2} \frac{\varphi}{2} \\
& \varphi=\frac{2 \pi \delta}{\lambda}+\Delta \phi_{0} \\
& \quad \delta=r_{1}-r_{2}
\end{aligned}
$$

Maxima at $\varphi=2 \pi m$
Minima at $\varphi=2 \pi\left(m+\frac{1}{2}\right)$
(m is any integer)

For more sources, or for different amplitudes:

Amplitude <-> length of vector Phase offset angle of vector ${ }_{\wedge}$ wit $t=0$

Use law of cosines:

$$
c^{2}=a^{2}+b^{2}+2 a b \cos \theta
$$

Practice with interference

Interferometer

Example of path-length dependent interference. We know the lengths of the arms L_{2} and L_{1}.

What is $r_{2}-r_{1}$?
a) $L_{2}-L_{1}$
b) $2 L_{2}-2 L_{1}$
c) $d \sin \theta$
d) $2 d \sin \theta$
e) Need the path from the laser

Interferometer problem

Interferometer problem

Application: LIGO

Two-slit experiment

coherent, monochromatic
Each slit acts as a source for light. They are in phase with each other.

What do you expect to see for $I(y)$?

a) Isolated peak

b) Repeating peaks

c) Two isolated peaks

Two-slit experimen

Two-slit experiment: distances

$$
\begin{aligned}
& E_{1}(y, t)=E \cos \left(\omega t-k r_{1}\right) \\
& E_{2}(y, t)=E \cos \left(\omega t-k r_{2}\right)
\end{aligned}
$$

Approximation: L is very big compared to d and y.

Constructive interference

	Construct $m=2$ $m=1$
$m=0$	What is th $2 m \lambda$
$m=-1$	b) 2λ
$m=-2$	c) $2 m \pi \lambda$
	d) $m \lambda$

Summary

Waves generated from two sources at distance r_{1} and r_{2}.
To an observer, looks like

$$
\begin{aligned}
& y_{1}(x, t)=A_{1} \cos \left(k r_{1}-\omega \mathrm{t}+\varphi_{1}\right) \\
& y_{2}(x, t)=A_{2} \cos \left(k r_{2}-\omega \mathrm{t}+\varphi_{2}\right)
\end{aligned}
$$

To find $y_{1}+y_{2}$, use phasors!
The $k r_{i}+\varphi_{i}$ term tells us the angle of the phasor. The relative angle is most important for interference.

