### Announcements

- The first lab is tomorrow (Thursday)
  - no more reminders like this!
- First two homework assignments are due tomorrow (Thursday) at 8:00am
  - see smartPhysics for late turn-in deadline
  - no more reminders like this!
- Please check that your iClicker is correctly registered in the gradebook

### Are you able to access the office hour schedule?

|             | Sunday | Monday<br>279 Loomis                                           | Tuesday<br>279 Loomis     | Wednesday<br>279 Loomis                                        | Thursday<br>279<br>Loomis | Friday | Saturday |
|-------------|--------|----------------------------------------------------------------|---------------------------|----------------------------------------------------------------|---------------------------|--------|----------|
| 8:00<br>AM  |        |                                                                |                           |                                                                |                           |        |          |
| 9:00<br>AM  |        |                                                                |                           |                                                                |                           |        |          |
| 10:00<br>AM |        |                                                                | Ahmed Alenezi             |                                                                | Evangeline<br>Wolanski    |        |          |
| 11:00<br>AM |        |                                                                |                           | Brett Merriman                                                 | Lazar Kish                |        |          |
| 12:00<br>PM |        |                                                                |                           |                                                                |                           |        |          |
| 1:00<br>PM  |        | Nick Abboud<br>or Siddharth Mansingh,<br>depending on the week | Carlos Conde<br>Ocazionez | Nick Abboud<br>or Siddharth Mansingh,<br>depending on the week |                           |        |          |
| 2:00<br>PM  |        |                                                                | Tahereh<br>Mozafarishamsi |                                                                |                           |        |          |
| 3:00<br>PM  |        |                                                                | Kannan Lu                 |                                                                |                           |        |          |

# Practice with interference



Michaelson interferometer

Diffraction grating

### Phasors: here today, gone tomorrow

Interference between waves from two coherent monochromatic sources



If 
$$A_1=A_2$$
 , then

$$I=2A_1^2\cos^2iggl(rac{\Delta\phi}{2}iggr)$$

$$\Delta \phi = rac{2\pi(r_1-r_2)}{\lambda} + \phi_2 - \phi_1$$

Constructive interference occurs when

$$\Delta \phi = 2\pi n$$

 $n=0,\pm 1,\pm 2,\ldots$ 

Destructive when

$$\Delta \phi = 2\pi igg( n + rac{1}{2} igg)$$

$$egin{aligned} y_1 &= A_1 \cos(kr_1 - \omega t + \phi_1) \ y_2 &= A_2 \cos(kr_2 - \omega t + \phi_2) \ y &= y_1 + y_2 \end{aligned}$$

(superposition principle)

If  $A_1 
eq A_2$  , then the phasor diagram tells us how to compute the intensity.

Remember, phasors represent oscillating quantities.

length of phasor <--> amplitude

angle of phasor wrt horizontal <--> phase (a.k.a. argument)

 $\cos(kr-\omega t+\phi)=\cos(\omega t-(kr+\phi))$ 

### **Michaelson Interferometer**



We know the lengths  $L_1$  and  $L_2$  of the arms.

What is  $r_2$ - $r_1$ , the difference in path lengths?

A)  $L_2-L_1$ B)  $(L_2-L_1)/2$ C)  $2(L_2-L_1)$ D) not enough info to determine

### **Michaelson Interferometer**



Suppose the laser has wavelength  $\lambda$ . We observe constructive interference at the screen (maximal intensity). What is the phase difference between the two paths?

A)  $\lambda n$ 

B) 
$$2\pi\left(n+rac{1}{2}
ight)$$

C)  $2\pi n$ 

D) 
$$\lambda\left(n+rac{1}{2}
ight)$$

### Michaelson Interferometer



Laser has wavelength  $\lambda$ . We observe maximal intensity at the screen. How far must we move mirror 1 to find the next maximum?

a)  $2\pi$ b)  $\lambda$ c)  $\pi$ d)  $\frac{\lambda}{2}$ 

### Example usage: measuring index of refraction



When light passes through the gas, it slows down, so its wavelength decreases.

==> MORE wavelengths now fit into the container

==> the interference pattern shifts

==> by measuring the shift, we can infer index of refraction n

## **Application: LIGO**



https://youtu.be/tQ\_teIUb3tE

### Young's double-slit experiment



Who will emerge victorious??

(Huygens will. But also Newton, in a way...)

c) Two isolated peaks

Each slit acts as a source for coherent

### Young's double-slit experiment



### Young's double-slit experiment: geometry



Approximation: L is very big comparedto d. $L \gg d$ 



### **Condition for constructive interference**



For what values of  $d \sin \theta$ does constructive interference occur?

A)  $n\lambda$ B)  $2\lambda$ C)  $2\pi n\lambda$ D)  $2\pi n$ 

### Multiple equally spaced slits/sources



# Condition for constructive interference with multiple slits





When there are two slits, the first intensity maximum is observed at  $\theta_{\max}$ 

When there are three slits (same d, same  $\lambda$  ), where will we find the first intensity maximum?



### Application of diffraction gratings: spectroscopy



By looking at the spectral lines, we can measure what atoms are present in exoplanets! (know d, but don't know  $\lambda$ )

X-ray crystallography

Send x-ray known λ through a crystal, bounces off atoms ("sources") and we know the distances between atoms.

DNA's structure was discovered this way





## Diffraction from a single aperture

**Diffraction:** the spreading of waves around obstacles or upon passing through an aperture

**Diffraction:** interference between multiple sources

"that's the same thing" - Huygens



### Multiple equally spaced slits --> aperture





### 6 slits: when do we get zero intensity?





What is the smallest value of  $\Delta \phi_{12}$  which makes the phasors sum to zero?

Α) 2π

Β) π

C) π/3

### 6 slits: when do we get zero intensity?





 $\Delta \phi_{12} = rac{\pi}{3}$ 

Which is the correct condition for the angle of the first diffraction minimum  $\theta_{\min}$  ?

A) 
$$a\sin heta_{
m min}=\lambda$$

- B)  $a\sin heta_{
  m min}=6\lambda$
- C)  $6a\sin heta_{\min}=\lambda$

### Checkpoint question: spot size



 $\sin \theta_{min} = \frac{\lambda}{a}$  $y_{min} = L \tan \theta_{min}$ 

Suppose a laser is incident on a small slit, which produces a spot on a screen a distance L away.

What would make the spot larger?

- a) Move the screen closer to the slit.
- b) Make the slit smaller.
- c) Decrease the wavelength of the laser.

### Spots from circular apertures

### Circular apertures: Airy disk

$$\sin \theta_0 = 1.22 \frac{\lambda}{D}$$

### Seeing stars: Beta Cygni (Albireo)



This photo shows the beautiful double star, Albireo, in Cygnus the Swan. Equipment used: Celestron C9.25 telescope and Casio QV8000SX digital camera George Lilley



$$\sin\theta_0 = 1.22 \frac{\lambda}{D}$$

#### Visible light $\,\lambdapprox 500~{ m nm}$

==> need D > 4 mm at the bare minimum (Rayleigh criterion)

Angular separation  $\theta_0$ = 35.3" = 0.00017 radians

## **Big camera/small camera**





If diffraction spots are too large, then features will bleed into each other and crisp images can't be resolved (like the screen here). What should you do to your camera aperture to avoid this effect?

- a) Increase the aperture size
- b) Decrease the aperture size
- c) Doesn't matter

### Summary



 $D\sin\theta_0 = 1.227$  $y = L\tan\theta$