
UNIT 12: TWO-STATE SYSTEMS

After this unit, you should be able to

• Predict the probability of a photon passing through a sequence of polarizing filters, given its
initial polarization state.

• Given a spin wave function, compute the probability of transmission through a Stern-Gerlach
device.

Light polarization as a quantum state

Light can be polarized either horizontally or vertically. How do we describe that for a photon using
quantum mechanics? Let’s suppose that the photon is moving in the z direction, so its polarization
is in the x, y plane. Let’s call horizontal (x) polarization Ψh and vertical (y) polarization Ψv.
The quantum state associated with each of them we will call h and v. A general quantum state
for polarization will be Ψ = aΨh + bΨv, where a and b can be any complex numbers, so long
as |a|2 + |b|2 = 1. Note that in this case, we have only discrete possibilities, as opposed to the
case when we are considering the probability that a particle is at a given position (Ψ(x) from the
previous section*).

In quantum mechanics, diagonal and circular polarization are written as superpositions of ver-
tical and horizontal polarization as shown in Table 1. Classically, you might expect there to be a
continuum of values. Why don’t we write it as Ψ(θ), with θ the angle from the y axis? This is
actually a very deep question which we cannot answer very rigorously in this class; you will learn
this in advanced quantum mechanics. One way of looking at this is to note that in polarization, a
diagonal polarization is Ψh+Ψv. On the other hand, a particle at x = 1 nm is not a superposition of
the particle being at x = 0 nm and x = 2 nm. For this course, it suffices to know that some things
(position, momentum) are represented by a continuous variable while other things (polarization)
are represented by discrete variables.

Table 1: Different polarizations of light written as linear combinations of horizontal(h) and
vertical(v) polarization.

Polarization direction State
Vertical Ψv

Horizontal Ψh

Diagonal (45 degrees) 1√
2
(Ψh + Ψv)

Diagonal (-45 degrees) 1√
2
(Ψh −Ψv)

Circular (right-handed) 1√
2
(Ψh + iΨv)

Circular (left-handed) 1√
2
(Ψh − iΨv)

1



2

Figure 1: (top) A model of how polarization filters work. If the lines are arranged in opposite ways,
the electric field cannot oscillate in either direction, and the light is blocked. (bottom) Light from
LCD screens is polarized. If the filter is held one way, you can see the screen, if it’s held the other
way, it’s blocked.
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Table 2: States with definite spin in different directions for systems with two spin possibilities.
Spin direction State
ẑ ↑
−ẑ ↓
x̂ 1√

2
(↑ + ↓)

−x̂ 1√
2
(↑ − ↓)

ŷ 1√
2
(↑ +i ↓)

−ŷ 1√
2
(↑ −i ↓)

Measurement of polarization

Now let’s suppose what happens when a photon encounters a filter that only lets vertically polarized
light through it. What do you suppose will happen? Surely, if the photon is vertically polarized, it
will simply pass through the filter. On the other hand, if the light is horizontally polarized, it will
not pass through the filter.

What about when the light has a diagonal polarization, so that its polarization is given by
1√
2
(Ψh + Ψv)? It turns out that the photon has a 50% probability of passing through a vertical

filter. And after the photon passes through the filter, its polarization is Ψv. Why has it changed?
Well, we said before that only vertically polarized light passes through the filter, so if the photon
passed through the filter, it must be vertically polarized.

The polarization Ψ is telling us the probability that the photon will pass through a filter. If the
polarization is given by aΨv +bΨh (with |a|2+ |b|2 = 1), then the probability of the photon passing
through the vertical filter is given by |a|2, and of passing through the horizontal filter is given by
|b|2.

Electron and atom spin

The spin of an electron or some atoms is described very similarly to the polarization of light
(remember, matter and light are very similar in quantum mechanics!). In these systems, there is
an internal quantity called spin1 that can either point up or down (or left or right, or forward or
backward). This results in a magnetic moment either pointing up or down. This applies to several
different types of systems: electrons, neutrons, protons, deuterium (hydrogen with a proton and a
neutron), silver atoms (Ag), and other atoms. The states are given as in Table 2, where ↑ means
that the magnetic moment is pointed in the +ẑ direction and ↓ means that the magnetic moment is
pointed in the −ẑ direction.

1It is called spin because the particle acts as if it’s spinning, which gives rise to angular momentum and a magnetic
field. However, this is angular momentum without classical rotation. Yep.
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Figure 2: Stern-Gerlach experimental setup. The changing magnetic field separates randomly
oriented atoms into two streams.

Measurement of spin and a generalized rule for measurement
Let’s suppose that we have an arbitrary spin state given by a ↑ +b ↓. Then we can compute the
probability of measuring a spin pointing up by using the same rule as we had before:

P (ẑ) =
|a|2

|a|2 + |b|2
, (1)

and a similar rule for P (ẑ). Remember the collapse rule: if we do measure spin in the ẑ direction,
then afterwards the wave function is ↑, even if it was something else before.

To find the probability of observing the spin in the x̂ direction, we have to use a slightly more
generalized version of the same rule, which is very similar to the dot product you may have seen
in vector math. Assume that |a|2 + |b|2 = 1; then,

P (x̂) =

∣∣∣∣ 1√
2

(↑ + ↓)∗ · (a ↑ +b ↓)
∣∣∣∣2 =

∣∣∣∣ 1√
2

(a+ b)

∣∣∣∣2 . (2)

Note the complex conjugate for the state that we’re measuring. Similarly,

P (ŷ) =

∣∣∣∣ 1√
2

(↑ +i ↓)∗ · (a ↑ +b ↓)
∣∣∣∣2 =

∣∣∣∣ 1√
2

(a− ib)
∣∣∣∣2 . (3)

You can verify for yourself that this rule has some sensible properties: a state with definite spin
direction will, with probability 1, be observed in that direction. In general, the measurement rule
for a particle with wave function Ψ and a state with definite direction S is: P (S) = |S∗ ·Ψ|2. Make
sure to normalize your wave function to use this rule. You can also use this rule for polarization!
A strange fact of this rule is that if the spin is definite in ẑ, then it is maximally indefinite in x̂ and
ŷ; a measurement in each of these directions has a 50/50 chance of being positive or negative.

Stern-Gerlach experiment
The Stern-Gerlach experiment is one of the experiments that really show that we have to use the
description of spin. The rules presented in this chapter are the simplest ones that have been come
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up with that also predict the output of this experiment. A measurement of the spin direction is
performed by sending the particle through a changing magnetic field. The particle will be deflected
an amount proportional to the alignment of the particle’s magnetic moment with the magnetic
field. Classically, one would expect to see a range of deflections, depending on which direction the
magnetic moment happened to be pointing. However, in reality, we only see two deflections; one
up and one down. This already is evidence for the quantum nature of spins; when we measure the
spin, we only get one of two values.

Things get very interesting when we perform multiple experiments in a row on the same atoms.
Let’s consider adding a second measurement in the ẑ direction after the one in Fig 2, but so that
it only intercepts the +z atoms. Since we already measured the z direction and found it to be +z,
the wave function is simply ↑. With probability 1, the atoms pass through the upper path. This is
similar to the polarization behavior!

Now suppose we measure in the x direction and choose the +x atoms. Their wave function is
now 1√

2
(↑ + ↓). If we then measure the z direction, then the atoms will go up and down with equal

probability, since it is an equal superposition of ↑ and ↓. And so on, there are many fun games one
can play with this. The behavior of spins is another instance of an uncertainty principle, similar to
what we saw with momentum and position. If the spin direction in the z-axis is definite, then the x
and y directions are uncertain, and vice versa.

Philosophical interlude
This is again a place where you might reasonably ask why is it this way, so that the x-direction
of spin can never be definite when the y direction of spin is definite. A similar motif appears
in the uncertainty principle between momentum and position. There are actually several levels
of understanding this. The first, and most important is that it works. This math predicts the
outcome extremely precisely not just the experiments we have presented here, but also a number
of other, even stranger experiments in which multiple spins interact with each other. At its core,
physics is about making precise models of reality and so if our mathematical model represents the
experiments accurately, then to some extent we have done our job, and this does it.

One might also ask whether "this is it;" that is, are there deeper principles that have this behav-
ior as a result? The answer is yes, there are, although they are a bit beyond this class. Actually
there are a number of principles that you’ve already seen which are the result of deeper princi-
ples, for example, the constant speed of light(special relativity, which is in reach for many of you),
conservation of energy (Noether’s theorem, which takes a little while), and spin (the combination
of special relativity and quantum mechanics). Keep asking why, and you’ll eventually get to an
unknown, though. You can take the principles we’ve learned in this class and perfectly success-
fully apply them to many physical problems of relevance, or you can choose to explore the deeper
principles. Either path is valid!


