
Unit 2: Interference
After this unit, you should be able to

• Compute the phase difference at an observer’s position between the waves emanated
from two sources, then compute the intensity that the observer experiences.

• Apply interference rules to two-slit, interferometer, and other interference prob-
lems where the path length and source phases differ.

Superposition of waves

In the previous section*, we considered a single harmonic wave generated by a source.
Now suppose that there are two sources (1 and 2) generating two waves. For this class,
for simplicity, we will only consider waves with the same wavelength, amplitude, and
speed, so they have the same A, ω, and k:

y1(x, t) = Acos(kx −ωt +φ1) (1)
y2(x, t) = Acos(kx −ωt +φ2). (2)

In many cases (you can always assume this in this course), the total wave is given by
superposition 1, so

ytotal(x, t) = y1(x, t) + y2(x, t). (3)

At some times and positions, y1 and y2 might be either the same sign or different signs.
So at some locations the summed amplitude will be larger than either of the waves by
themselves, and at other locations it will be smaller. We refer to this as interference.
If the waves are the same sign, they will interfere constructively and if they are opposite
signs, they will interfere destructively. A picture of this is shown in Figure 1.

Using the trigonometric identity
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we can find that
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So the result is a new cos wave with a new amplitude related to the difference in phase,
2Acos

(
φ1−φ2
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)
. That means that the average intensity is given by 2A2 cos2

(
φ1−φ2

2

)
, so the

difference in phase between the waves is the key to knowing the total intensity. There are
a few ways of getting differences in the phase.

1Waves that do this are called “linear” because they add.
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Figure 1: Destructive interference between two waves

Phasors

What if the amplitudes of the waves are different? In that case, we cannot use the trigono-
metric identity in Eqn 4. Luckily, there is a graphical way of adding harmonic waves,
called phasors.

An observer at a given position will see an amplitude from a given source that varies
like A1 cos(φ1 − ωt). Phasors map this onto a two dimensional vector (Figure 2) with
amplitude A1 and an angle from the x-axis given by φ1 −ωt. Then the amplitude at any
given time is given just by the x coordinate of the vector, by trigonometry. It turns out
that you can add phasors as if they are vectors, and the x coordinate of the summed vector
will give the amplitude of the wave at a given time. The length of the phasor squared,
divided by two, will give the average intensity of the summed wave.

Example: Two speakers

Now let’s consider the intensity of waves emitted by two sources, as measured by an
observer. We will consider an observer that is r1 away from source 1 and r2 away from
source 2 (Figure 3) For simplicity, let’s suppose that the sources have exactly the same
amplitude. For example, this could be a person listening to music from two speakers.
Our objective will be to compute how loud the observer percieves the sound to be. The
waves that the observer experiences2 from each source are:

y1(x, t) = Acos(kr1 −ωt +φ1) (6)
y2(x, t) = Acos(kr2 −ωt +φ2). (7)

2This is the amplitude at the observer’s position.
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Figure 2: A figure that shows the relationship between phasors and harmonic waves.

Figure 3: An observer experiencing the intensity of waves generated from two sources in
phase.
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Then, using the trigonometric identity from Eqn 4,

y1(x, t) + y2(x, t) = 2Acos
(
kr1 +φ1 − kr2 −φ2

2

)
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2
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)
. (8)

and the total average intensity for that observer is

Itotal = 2A2 cos2
(
kr1 +φ1 − kr2 −φ2

2

)
. (9)

So the measured intensity depends on the relative phase offsets of the speakers (φ1,φ2) as
they are emitting the sound and the position of the observer relative to the two speakers.

Let’s suppose that φ1 = φ2 (when this is true, we say that the sources are in phase), so
that

Itotal = 2A2 cos2
(
k
r1 − r2

2

)
= 4I1 cos2

(
k
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2

)
. (10)

The intensity is maximal (2A2) when r1 − r2 = mλ, where m is an integer, and it is zero
when r1 − r2 =

(
m+ 1

2

)
λ for some (possibly other) integer m.

Because amplitudes add, and intensity is amplitude squared, the maximal intensity is
actually four times as large as the intensity of a single source. Energy is still conserved
here, because there are places with zero intensity. Interference is just redistributing the
total energy compared to the two sources operating independently.

Example: Two slits

An important example of interference is the two-slit experiment, shown in Fig 4. In this
experiment, we aim a laser at an opaque barrier with two slits made in it. There is a
screen placed a distance L away from the barrier. We measure the intensity of light on
the screen as a function of the position on the screen.

We use the physics of interference to analyze this situation.

• We treat the slits as if they are sources of waves.

• Since both slits are equidistant from the laser, the waves at each slit are in phase;
that is, φ1 = φ2 when considered at the slit.

• The variation of intensity measured on the screen will be due to the fact that differ-
ent points on the screen are different distances from the slits.

• If the slits are the same size, then the amplitude measured at the screen will be the
same from each slit (A1 = A2).

• The wavelength coming from both slits is the same, since the same laser is incident
(k1 = k2 and ω1 =ω2)
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Figure 4: Geometric setup of a two-slit experiment. The card in the pictures has slits
separated by a distance d (usually a few µm). The screen is placed L (a meter or two)
away from the card. Then the intensity varies on the screen as we can see from a pattern
of bright and dark spots. The position on the screen is y.



6

Figure 5: Interferometer optical setup

Because of these observations, we can use Eqn 10 to compute the intensity at a point in
the screen. All that has to be done is to compute the difference in distance to the slits,
δ = r1 − r2.

The calculation of δ can be done by assuming that L is much larger than the separation
between the slits, d. In that case, δ = d sinθ. So the angles at which the intensity is
maximal will be when d sinθ = mλ, with m an integer. There will be minima between
each of the maxima!

Example: Interferometer

The interferometer uses interference to measure distances very accurately, as you might
be able to tell from the name (interfero - meter). In this setup, a laser is sent down a path
where it encounters a half-silvered mirror set at a 45 degree angle. This mirror reflects
half of the light and allows half of the light to pass through. The intensity is reduced
by a factor of two for each path, but then recombines. The light then travels down two
separate paths, of length L1 and L2, and rejoin at the mirror. We place a detector as noted
in the figure.

Since the mirrors typically absorb some of the light, we typically don’t work the in-
tensity of the laser, but instead use the intensity of the light with one path blocked: I1.
Since the two paths are in phase, we can use Eqn 10, so

I = 4I1 cos2
(
k
r1 − r2

2

)
. (11)
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r1 is the distance traveled on one path, and r2 is the distance traveled on the second path.
It actually doesn’t matter the total values of r1 and r2; we can compute r1 − r2 knowing
just the difference between the arm lengths:

r1 − r2 = 2(L1 −L2) (12)

The factor of two occurs because the light travels the arms twice, once to the terminal
mirror, and again on the way back.


