Unit 5: Probability and complex numbers

At this point, we note that we have a tension: we describe light as a wave in that it exhibits interference, but light arrives in what appears to be discrete packets that come at random. This is sometimes referred to as "wave-particle duality;" however, the real answer is much more revolutionary. The resolution to this duality is that everything is described using probability waves that interfere just like the waves we have been studying earlier in the class, and allow us to compute the probabilities of events (such as observing a photon at a particular location).

The probability waves are written in terms of complex numbers, and are used to compute probabilities. At this point in their career, many students have not had a lot of experience with this mathematics, so we will spend this unit discussing these concepts.

After this unit, you should be able to

- Given a probability density $\rho(x)$ for the position of a particle, compute the probability of observing that particle within a given range $a<x<b$.
- Using the probability for a particle of a given kinetic energy hitting a detector and the flux of particles, compute the total power incident on the detector.
- Manipulate complex numbers to find the magnitude squared and complex conjugate, and use Euler's equation.

Probability density

A probability is a number between 0 and 1. A probability density is a function, often called $\rho(x)$, that represents the probability per unit length. This is similar to the relationship between intensity and power; intensity is the power per unit area, and the power is the total amount of energy per second.

Probability densities have the following properties:

$$
\begin{equation*}
\rho(x) \geq 0 \tag{1}
\end{equation*}
$$

and so-called normalization

$$
\begin{equation*}
\int_{-\infty}^{\infty} \rho(x) d x=1 \tag{2}
\end{equation*}
$$

Normalization ensures that the probability of the particle being somewhere is equal to 1 .
The probability for x to be between two points a and b, assuming $a<b$, is

$$
\begin{equation*}
P(a<x<b)=\int_{a}^{b} \rho(x) d x . \tag{3}
\end{equation*}
$$

Because of Eqns. 1 and 2, this probability is always between 0 and 1. Note that ρ can actually have a value greater than 1 , as long as it is normalized.

Probability density examples

Normalization

Suppose a probability density is given by $\rho(x)=N e^{-x}$ for $0<x<\infty$, and is zero elsewhere. What must N be to ensure the probability density is normalized?

Solution: We must have

$$
\begin{equation*}
\int_{-\infty}^{\infty} \rho(x) d x=\int_{0}^{\infty} N e^{-x} d x=1 \tag{4}
\end{equation*}
$$

The integral starts at zero because $\rho=0$ for $x<0$. The integral

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{\infty}=1 \tag{5}
\end{equation*}
$$

So therefore $N \cdot 1=1$ and $N=1$ to normalize this probability density.

Number of particles per second

Suppose that we place a detector between $x=a$ and $x=b \mu \mathrm{~m}$. Suppose that the normalized probability density of a particle hitting the detector in that region is given by $\rho(x)=(0.1+C x) \mu \mathrm{m}^{-1}$ in that region, with $C=0.05 \mu \mathrm{~m}^{-2}$. The probability density must have units of inverse length because when we integrate it, it must equal a unitless number.

Question part 1

What is the probability that a single particle hits the detector?
Solution: The probability is given by

$$
\begin{equation*}
P(a<x<b)=\int_{a}^{b} 0.1+C x d x=0.1(b-a)+\frac{C}{2}\left(b^{2}-a^{2}\right) \tag{6}
\end{equation*}
$$

Question part 2

Suppose that 1000 particles are sent at the detector per second. How many will hit the detector on average per second?

Solution: The number is $1000 \cdot P(a<x<b)$ particles per second, since each particle has probability $P(a<x<b)$ to hit the detector.

Complex numbers

In quantum mechanics, we describe the interference of particles using complex numbers. This is very similar to the phasor description of waves. Some rules:

- $i=\sqrt{-1}$.

Figure 1: Adding complex numbers. For $z=x+i y$, the real part is x, labeled Re, and the imaginary part is y, labeled Im.

- $e^{i \theta}=\cos (\theta)+i \sin (\theta)$
- For a complex number $z=x+i y$, the complex conjugate $z^{*}=x-i y$
- For a complex number $z=x+i y$, the magnitude squared (also known as the absolute value squared) is $|z|^{2}=z z^{*}=(x+i y)(x-i y)=x^{2}+y^{2}$

For complex conjugation, the main thing is to remember that the i gets a minus sign.
We will sometimes write complex numbers as $A e^{i \theta}$, where A is some positive real overall amplitude. This has the advantage that the magnitude squared is $A e^{i \theta} A e^{-i \theta}=A^{2}$.

You can think of complex numbers as being better phasors. As implied by $z=x+i y$, the numbers can be drawn on a 2 D plot, and added component-wise in the same way as 2 D vectors:

$$
\begin{equation*}
z_{1}+z_{2}=x_{1}+i y_{1}+x_{2}+i y_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \tag{7}
\end{equation*}
$$

The main difference between complex numbers and phasors is that we can multiply complex numbers to get another complex number:

$$
\begin{equation*}
z_{1} \cdot z_{2}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)=x_{1} x_{2}+i y_{1} x_{2}+i x_{1} y_{2}-y_{1} y_{2} \tag{8}
\end{equation*}
$$

Example: interference using complex numbers

Consider the four complex numbers:

$$
\begin{aligned}
& z_{1}=1+i \\
& z_{2}=1+i \\
& z_{3}=1-i \\
& z_{4}=-1-i
\end{aligned}
$$

Some sums are shown in Fig 1. What is the magnitude squared of the complex numbers $z_{1 i}=z_{1}+z_{i}$ for $i=2,3,4$?

Solution: First let's compute the sums

$$
\begin{aligned}
& z_{12}=2+2 i, \\
& z_{13}=2, \\
& z_{14}=0 .
\end{aligned}
$$

Now using the definition of the magnitude squared,

$$
\begin{align*}
& \left|z_{12}\right|^{2}=z_{12} z_{12}^{*}=(2+2 i) *(2-2 i)=4+4=8, \tag{9}\\
& \left|z_{13}\right|^{2}=z_{13} z_{13}^{*}=(2) *(2)=4, \tag{10}\\
& \left|z_{14}\right|^{2}=z_{14} z_{14}^{*}=(0) *(0)=0 . \tag{11}
\end{align*}
$$

You may be able to see the reason for the definition $|z|^{2}=z z^{*}$; it is equivalent to the definition of length for a 2 D vector $|v|^{2}=v_{x}^{2}+v_{y}^{2}$.

Example 2: Euler's equation

We can also write $z=R e^{i \theta}=R \cos \theta+i R \sin \theta$, with R a positive real number. This is the equivalent of writing a 2 D vector in polar coordinates. Show that $|z|^{2}=R^{2}$.

Solution: We must use the identity $z^{*}=R e^{-i \theta}$, where we used the rule of replacing i with $-i$ to take the complex conjugate. Then

$$
\begin{equation*}
|z|^{2}=z z^{*}=R e^{i \theta} R e^{-i \theta} \tag{12}
\end{equation*}
$$

Using the identity $e^{a} e^{b}=e^{a+b}$,

$$
\begin{equation*}
|z|^{2}=R \cdot R=R^{2} \tag{13}
\end{equation*}
$$

which is the desired relationship.

