
Unit 5: Probability and complex numbers
At this point, we note that we have a tension: we describe light as a wave in that it exhibits
interference, but light arrives in what appears to be discrete packets that come at random.
This is sometimes referred to as “wave-particle duality;” however, the real answer is much
more revolutionary. The resolution to this duality is that everything is described using
probability waves that interfere just like the waves we have been studying earlier in the
class, and allow us to compute the probabilities of events (such as observing a photon at
a particular location).

The probability waves are written in terms of complex numbers, and are used to com-
pute probabilities. At this point in their career, many students have not had a lot of
experience with this mathematics, so we will spend this unit discussing these concepts.

After this unit, you should be able to

• Given a probability density ρ(x) for the position of a particle, compute the proba-
bility of observing that particle within a given range a < x < b.

• Using the probability for a particle of a given kinetic energy hitting a detector and
the flux of particles, compute the total power incident on the detector.

• Manipulate complex numbers to find the magnitude squared and complex conju-
gate, and use Euler’s equation.

Probability density

A probability is a number between 0 and 1. A probability density is a function, often
called ρ(x), that represents the probability per unit length. This is similar to the re-
lationship between intensity and power; intensity is the power per unit area, and the
power is the total amount of energy per second.

Probability densities have the following properties:

ρ(x) ≥ 0 (1)

and so-called normalization ∫ ∞
−∞
ρ(x)dx = 1. (2)

Normalization ensures that the probability of the particle being somewhere is equal to 1.
The probability for x to be between two points a and b, assuming a < b, is

P (a < x < b) =
∫ b

a
ρ(x)dx. (3)

Because of Eqns. 1 and 2, this probability is always between 0 and 1. Note that ρ can
actually have a value greater than 1, as long as it is normalized.
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Probability density examples

Normalization

Suppose a probability density is given by ρ(x) =Ne−x for 0 < x <∞, and is zero elsewhere.
What must N be to ensure the probability density is normalized?

Solution: We must have ∫ ∞
−∞
ρ(x)dx =

∫ ∞
0
Ne−xdx = 1. (4)

The integral starts at zero because ρ = 0 for x < 0. The integral∫ ∞
0
e−xdx = −e−x|∞0 = 1. (5)

So therefore N · 1 = 1 and N = 1 to normalize this probability density.

Number of particles per second

Suppose that we place a detector between x = a and x = b µm. Suppose that the nor-
malized probability density of a particle hitting the detector in that region is given by
ρ(x) = (0.1 +Cx) µm−1 in that region, with C = 0.05 µm−2. The probability density must
have units of inverse length because when we integrate it, it must equal a unitless number.

Question part 1

What is the probability that a single particle hits the detector?
Solution: The probability is given by

P (a < x < b) =
∫ b

a
0.1 +Cxdx = 0.1(b − a) +

C
2

(b2 − a2) (6)

Question part 2

Suppose that 1000 particles are sent at the detector per second. How many will hit the
detector on average per second?

Solution: The number is 1000·P (a < x < b) particles per second, since each particle
has probability P (a < x < b) to hit the detector.

Complex numbers

In quantum mechanics, we describe the interference of particles using complex numbers.
This is very similar to the phasor description of waves. Some rules:

• i =
√
−1.
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Figure 1: Adding complex numbers. For z = x + iy, the real part is x, labeled Re, and the
imaginary part is y, labeled Im.

• eiθ = cos(θ) + i sin(θ)

• For a complex number z = x+ iy, the complex conjugate z∗ = x − iy

• For a complex number z = x+iy, the magnitude squared (also known as the absolute
value squared) is |z|2 = zz∗ = (x+ iy)(x − iy) = x2 + y2

For complex conjugation, the main thing is to remember that the i gets a minus sign.
We will sometimes write complex numbers as Aeiθ, where A is some positive real

overall amplitude. This has the advantage that the magnitude squared is AeiθAe−iθ = A2.
You can think of complex numbers as being better phasors. As implied by z = x + iy,

the numbers can be drawn on a 2D plot, and added component-wise in the same way as
2D vectors:

z1 + z2 = x1 + iy1 + x2 + iy2 = (x1 + x2) + i(y1 + y2) (7)

The main difference between complex numbers and phasors is that we can multiply com-
plex numbers to get another complex number:

z1 · z2 = (x1 + iy1)(x2 + iy2) = x1x2 + iy1x2 + ix1y2 − y1y2 (8)

Example: interference using complex numbers

Consider the four complex numbers:

z1 = 1 + i
z2 = 1 + i
z3 = 1− i
z4 = −1− i

Some sums are shown in Fig 1. What is the magnitude squared of the complex numbers
z1i = z1 + zi for i = 2,3,4?
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Solution: First let’s compute the sums

z12 = 2 + 2i,
z13 = 2,
z14 = 0.

Now using the definition of the magnitude squared,

|z12|2 = z12z
∗
12 = (2 + 2i) ∗ (2− 2i) = 4 + 4 = 8, (9)

|z13|2 = z13z
∗
13 = (2) ∗ (2) = 4, (10)

|z14|2 = z14z
∗
14 = (0) ∗ (0) = 0. (11)

You may be able to see the reason for the definition |z|2 = zz∗; it is equivalent to the
definition of length for a 2D vector |v|2 = v2

x + v2
y .

Example 2: Euler’s equation

We can also write z = Reiθ = Rcosθ + iRsinθ, with R a positive real number. This is the
equivalent of writing a 2D vector in polar coordinates. Show that |z|2 = R2.

Solution: We must use the identity z∗ = Re−iθ, where we used the rule of replacing i
with −i to take the complex conjugate. Then

|z|2 = zz∗ = ReiθRe−iθ. (12)

Using the identity eaeb = ea+b,
|z|2 = R ·R = R2, (13)

which is the desired relationship.


