
Unit 7: Momentum and position

After this unit, you should be able to

• Explain whether a wave function has definite momentum.

• From a superposition of eigenstates, compute the probability of a measurement out-
come.

• Apply the Heisenberg Uncertainty Principle to determine the limits of what can be
predicted about measurement outcomes.

Wave function of a particle with definite momentum

We can explain the electron double slit experiment (and many other similar experiments)
if we assume that the wave function of a particle with momentum p1 is:

Ψ (x, t) = Aei(kx−ωt), (1)

where k = p/~. We don’t yet know how to determine ω (we will do that in Unit 10).
As a simplification, if we suppose that the particle is in a large box of length L, then

A =
√

1
L from the normalization condition. So for the moment, let’s just consider the wave

function at a given time t = 0, so
Ψ (x) = Aeikx. (2)

The wave function tells us the probability of measuring quantities. This is one of
the very fundamentally different things about the quantum mechanical description as
opposed to the classical mechanics description.

For the wave function in Eqn 2, if we measure the momentum, say by measuring the
change in momentum the particle imparts on some other thing when it impacts it, we
will always find that the particle has momentum p. On the other hand, if we measure the
location of the particle, then we will find that it can be anywhere within that large box,
since

ρ(x) = Ψ (x)Ψ ∗(x) = |A|2. (3)

This is referred to as uncertainty in quantum mechanics. For this particular wave func-
tion, we can predict the outcome of a measurement of the momentum very precisely (it’s
always p), but we cannot predict the outcome of a measurement of the position very pre-
cisely. We would find it somewhere in the box, but it’s completely random where we will
find it!

1In quantum mechanics, we work with momentum rather than velocity. Part of the reason is that the
math is easier this way. Another reason is that momentum is actually more fundamental to physics than
velocity. For example, the more general formula for Newton’s first law is F = dp

dt .
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Eigenstates

The wave function in Eqn 2 is called an eigenstate2 of momentum. This means that when
we measure the momentum of the particle with that wave function, we can predict that
we will obtain one particular value of the momentum, ~k. We will also sometimes say
that such a wave function has definite momentum.

One can also have eigenstates of position, which are wave functions that are only non-
zero in one location. The mathematics of this is a little bit beyond this course,3 so we will
not cover this. In later units, we will learn how to find energy eigenstates, which are very
important in quantum mechanics.

Superposition of wave functions

Suppose we have a particle which we confine to a box of side L with wave function

Ψ (x) = A
(
eik1x + eik2x

)
(4)

with k1 = 2π
L and k2 = 4π

L . What will happen when we measure the momentum of a
particle with this wave function? Since the wave function is an equal superposition of
two wave functions with different momenta, we have an equal probability of measuring
~k1 and ~k2. This is not a momentum eigenstate since two different momenta could be
measured.

In general, if the wave function is given by

Ψ (x) = A
(
aeik1x + beik2x

)
, (5)

we will obtain ~k1 with probability a2

a2+b2 and ~k2 with probability b2

a2+b2 . The denominator
(a2 + b2) ensures that the probabilities add to 1 (normalization).

What about measuring the position of the particle? From Fig 1, we can see that as
we add together more momentum eigenstates, the position is more likely to be measured
near the middle of the box than near the edges. So this wave function has more uncer-
tainty in momentum than the momentum eigenstate, but less uncertainty in position.

Heisenberg uncertainty principle

It turns out that there is a general relationship between the spread of the momentum
values and the spread of position values, which is encoded in the Heisenberg uncertainty
principle:

∆x∆p ≥ ~

2
. (6)

2“Eigen” is from German, where it means ’same.’
3Dirac delta functions
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Figure 1: Making a localized wave function using a sum of momentum eigenstates. Each
row is one wave function; the left is the probability density for position, while the right is
the probability density for momentum. The momentum probability density is a bunch of
spikes because it is a sum of momentum eigenstates. To make a wave function with high
probability to be in one position, it’s necessary to include many possible momenta.
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Figure 2: The position and momentum probabilities for various wave functions. Each
row corresponds to one wave function with form proportional to exp(−x2/2σ2), and the
probability of measuring position and momentum is given in each column.
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This relationship puts fundamental physical limits on how well we can predict the out-
come of an experiment.4

4If you are paying extremely close attention, you might notice that a particle in a box with wave function
eikx seems to violate this. This is because we ignored boundary conditions. This is ok if the box is very large.


