
Unit 8: Energy of quantum particles
To summarize the last few section*s, in the quantum mechanics description of physics,
the primary description of the state is the wave function, Ψ . For a particle moving in one
dimension, the wave function is Ψ (x, t). The wave function determines the probability
of a measurement, which is given by the absolute square of the wave function. So far,
we discussed how wave functions give the probability of measuring a particle at a given
position and momentum.

In this section*, we consider how to compute the result of an energy measurement.
We will find out that in many situations, the energy we can measure in a quantum system
will only be one of several discrete amounts, or quanta. This is the origin of the name of
quantum mechanics!

After this unit, you should be able to

• Check whether wave functions satisfy the time-independent Schrödinger equation.

• Explain how the Schrödinger equation is consistent with experimental observations
of the relationship between wavelength, momentum, and energy for a free particle.

• For a particle in an infinite square well of length L, compute the allowed energies
that could be measured.

• If the particle is in an energy eigenstate of the infinite square well with quantum
number n, compute the probability of it being found between x = a and x = b.

Energy of a free particle

• The energy of a free particle with wave function Aeikx is ~
2k2

2m

From the last section*, recall that if a particle has a definite momentum, then its wave
function is given by

Ψ (x) = Aeikx. (1)

If we measure the momentum of this particle, say by observing how it bends in a magnetic
field, then with probability 1 the momentum will come out to ~k. We will write this as
pk = ~k, where the k subscript represents that the wave function of the particl is from
Eqn 1.

What is the energy of a free particle with the wave function of Eqn 1? You may recall
from classical mechanics that it is 1

2mv
2. Since our formula is in terms of pk = mv = ~k,

we write the energy as

Ek =
p2
k

2m
=
~

2k2

2m
. (2)
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The momentum equation

To review the logic of the previous section*s, we know empirically that we describe the
state of a particle using a wave function, and the wave function of a particle with mo-
mentum p is Aeikx, with k = p/~. We find the possible values of momentum by expanding
any wave function as a superposition of momentum eigenstates, and then reading the
probabilities off the expansion.

If we want to know what energies can be measured, we need a way to find energy
eigenstates when there is a potential energy. For that we will need to generalize our
principle beyond just empirically measuring the wave function using diffraction. The
principle of quantum mechanics is that you find eigenstates by performing an operation
on the wave function, and if the wave function does not change other than a total factor,
then the wave function is an eigenstate. This is the ’same’ of eigenstate, from German.

For momentum, the operation is the derivative −i~ ∂
∂x . Applying that to our momen-

tum eigenstate, we get

−i~∂Ae
ikx

∂x
= ~kAeikx = pAeikx. (3)

So we see that we get back the original wave function with a constant factor of the mo-
mentum applied. Note that this equation means that it holds for all values of x; this is an
equality of functions.

The Schrödinger equation: the energy operation

• The time-independent Schrödinger equation tells us which wave functions are en-
ergy eigenstates.

For this section* (and this course), we will just consider a wave function at a given
time, which we will write Ψ (x). Time propagation in quantum mechanics is a surprisingly
advanced topic that you will learn about in your next class. For a particle of mass m in
one dimension, the Schrödinger equation is

− ~
2

2m
d2Ψ (x)
dx2 +U (x)Ψ (x) = EΨ (x). (4)

In this equation, U (x) is the external potential energy, and − ~
2

2m
d2Ψ (x)
dx2 is our momen-

tum operation squared, divided by 2m. This is analogous to the energy being written
as p2/2m+U in classical mechanics.

There are several important things to note about this equation:

• Only certain wave functions satisfy Eqn 4. These special wave functions are called
energy eigenstates

• E is a number that gives the energy of the wave function.
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• If a particle is in an energy eigenstate, any measurement of its energy will result
in E. For many systems, only certain values of E have a wave function that satifies
Eqn 4.

• Energy eigenstates are also called stationary states. Their probabilities don’t change
in time.

• For the wave function to be an energy eigenstate, it must be true for all values of x,
for the same value of E. You don’t get to change E for different values of x.

Example: free particle

Let’s describe a free particle using the Schrödinger equation. In that case, the external
potential is zero (that’s what “free” means!), and the equation is:

− ~
2

2m
d2Ψ (x)
dx2 = EΨ (x). (5)

The most common solution method is to guess a wave function and check whether it
satisfies Eqn 5. Let’s guess Ψk(x) = Aeikx as the wave function. Then

− ~
2

2m
d2Aeikx

dx2 = − ~
2

2m
(ik)2Aeikx =

~
2k2

2m
Ψk(x). (6)

So this wave function satisfies the Schrödinger equation if the energy E = ~
2k2

2m , and any
wave function of this form is an energy eigenfunction. In this case, k can be any real
number, so the energy can take on any positive value. In quantum mechanics, k is an
example of a quantum number, which is a label for the energy eigenstates.

This makes some sense; we said earlier that a particle with wave function eikx has
momentum p = ~k. For a free particle, all energy is kinetic energy, so we would expect
the energy to be

1
2
mv2 =

p2

2m
=
~

2k2

2m
. (7)

So the derivative term is associated with kinetic energy, which matches theU (x) term that
is associated with potential energy.

Example II: a non-energy eigenstate for a free particle

Now consider the wave function Ψ (x) = aeik1x + beik2x. Then

− ~
2

2m
d2aeik1x + beik2x

dx2 =
~

2k2
1

2m
aeik1x +

~
2k2

2

2m
beik2x. (8)

No matter what we do, we cannot get back a constant times Ψ on the right hand side,
since k1 , k2. So this wave function is not an energy eigenstate. In fact, if we measure the
energy of such a particle using a magnetic field, for example, then we will measure:
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Energy Probability
~

2k2
1

2m
a2

a2+b2

~
2k2

2
2m

b2

a2+b2

We can compute this because we have expanded Ψ in terms of energy eigenstates eik1x

and eik2x.

Quantized energy levels: infinite square well

Now we consider a case where U is not just zero. Imagine creating a well (a 1D box) in
which the particle is allowed to move freely from x = 0 to x = L, but encounters an infinite
potential barrier at either side. In this case,

U (x) =

0 if 0 < x < L
∞ otherwise

(9)

Given this, let’s look back at Eqn 4 to see what kind of wave function can satisfy the
equality. The first thing we can notice is that since U is ∞ outside the box, the only way
for the equality to be satisfied is for either Ψ (x) to be zero, or have infinite energy. The
more physically possible case is for the wave function to be zero outside the box. This
makes some sense classically; if a particle is inside a box with infinitely hard walls, there
is zero probability to find it outside the box.

Inside the box, U = 0, so the Schrödinger equation looks a lot like the free particle
case. However, we have an additional constraint–the wave function goes to zero at the
edges. This has to happen in order for the Schrödinger equation to be satisfied, since the
potential energy is infinite there. A guess wave function that works is

Ψ (x) =

Asin(nπxL ) if 0 < x < L
0 otherwise,

(10)

where n is an integer.
We can find A by enforcing normalization:∫ L

0
A2 sin2

(nπx
L

)
dx = 1. (11)

You can verify that if A =
√

2
L , then this integral is equal to 1. By plugging our guess Ψ

into the Schrödinger equation, we can get the energy:

En =
~

2n2π2

2mL2 (12)

Important things to note about this:
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• Because of the boundary conditions (Ψ must be zero at 0 and L), only integer values
of n are allowed.

• The more oscillations in the wave function, the higher the energy.

• Since only certain values of n are allowed, only certain values of the energy are
allowed.

What it means to have only certain energies allowed

In the previous section*, we saw that sometimes a quantum system can only be observed
to have certain values of the energy. Let’s investigate what that means practically. Let’s
suppose that we have a quantum system (an atom) with two allowed energy levels, E1
and E2, with corresponding energy eigenstates Ψ1 and Ψ2. There may be more energy
eigenstates but we will just consider those two for simplicity.

Imagine that the atom has wave function equal to the ground state (lowest energy
state), Ψ1. As we will find later, if the atom is not disturbed, it will remain in the ground
state forever. Suppose now that we disturb the system by allowing a photon to come
near it. There is a chance that the photon will interact with the atom. Let’s consider the
possibilities:

1. At the end of the process, a photon comes out with energy ~ω and the atom is left
with energy E1.

2. The photon is absorbed by the atom. No photon comes out and the atom is left with
energy E2.

While possibility 1 can always happen, possibility 2 can only happen if E2−E1 = ~ω. This
is because energy is still conserved in quantum mechanics; so if we started with E1 + ~ω
energy, we must end with that much energy when everything is settled. Similarly, if the
atom started in Ψ2, then it might emit a photon with energy ~ω = E2 −E1.

Atoms, liquids, solids, etc can only absorb photons with energy equal to the difference
between their energy levels. This is why glass is transparent, why we can see through air
and water. It is why rose-tinted glasses remove all colors but rose. Similarly, quantum
systems can only emit photons with energy equal to a difference between their energy
levels. This is what gives neon lights their particular color, and in general is what gives
objects their color. The list of energies that a given quantum system can obtain is called
the spectrum. In Latin, spectrum meant ‘image’ and indeed the spectrum of a quantum
system determines what type of light it interacts with.

Application: quantum dot technology

At the time of this writing, new displays are emerging that use quantum dot technol-
ogy to emit light of very pure frequencies. Here is some data that Samsung1 published:

1https://news.samsung.com/global/why-are-quantum-dot-displays-so-good
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Figure 1: Photon energies emitted by a quantum dot versus the size. It is a reciprocal
relationship, as we derived in Eqn 12

Size of the dot (nm) Wavelength of light emitted (nm) E2 −E1 (eV)2 Color
2 500 2.5 Blue

2.5 530 2.3 Green
3 570 2.2 Green-yellow
5 610 2.0 Orange
6 640 1.9 Red

Fig 1

shows this same data, where we can see that it matches our model from Eqn 12 pretty
well, since we would predict that the energy difference between the lowest energy eigen-
state and the next higher energy eigenstate is

E2 −E1 =
~

23π2

2mL2 . (13)

The fact that the energies are quantized means that the quantum dot physically cannot
emit light which is not equal to an energy difference between energy eigenstates. This
makes the light very highly peaked around a single wavelength, which allows these dis-
plays to be very beautiful.


