ZERO-DEGREE CALORIMETERS FOR **HEAVY-ION COLLISIONS @ THE ATLAS EXPERIMENT** Thanks to Riccardo Longo

For providing slides

UIUC ATLAS - RL 2 9-3-2024

Heavy ions - in a nutshell

Hadronic A+A collisions

Ultra-Peripheral A+A collisions

- Precision Quantum Electro-Dynamics
- Study of the nuclear structure

•Investigate the early universe via characterization of the Quark Gluon Plasma (QGP)

UIUC ATLAS - RL 3 9-3-2024

Heavy ions - in a nutshell

Hadronic A+A collisions

Ultra-Peripheral A+A collisions

universität viel Children in Children
Children of the theory IISIUIIS UITVES TIEDITY erytnir Geometry in these collisions drives nearly everything

having a proper trigger for the experiment Distinguishing between these classes of physics processes is key to

Zero degree calorimeters

- •When colliding ions, additional calorimeters are usually installed on the beamlines: the **Zero Degree Calorimeters (ZDCs)**
- •The ZDCs measure **spectator neutrons** that did not interact in the collision •The ZDC is installed in the Target Absorber for Neutrals (TAN), at ±140 m from ATLAS IP
-

Zero degree calorimeters

- •When colliding ions , additional calorimeters are usually installed on the beamlines: the **Zero Degree Calorimeters (ZDCs)**
- •The ZDCs measure **spectator neutrons** that did not interact in the collision •The ZDC is installed in the Target Absorber for Neutrals (TAN), at ±140 m from ATLAS IP
-

UIUC ATLAS - RL 5 9-3-2024 August 2023

ZDC as primary process tagger

- •By counting **spectator neutrons,** the **ZDC** can infer the type of interaction between the ions and the geometry of the collision
	- •No neutrons on either side ("**OnOn**") is typically from γ - γ processes
	- •Neutrons only on one side ("**Xn0n"/"0nXn**") is typically from photonuclear processes
	- •Neutrons on both sides ("**XnXn**") typically come from spectators in hadronic processes

UIUC ATLAS - RL $\frac{211117 \text{ NQ}}{157.60073 \text{ NQ}}$ **[Ann. Rev. Nucl. Part.](https://www.annualreviews.org/doi/abs/10.1146/annurev.nucl.57.090506.123020) [Sci. 57 \(2007\) 205](https://www.annualreviews.org/doi/abs/10.1146/annurev.nucl.57.090506.123020)**

Gale et al, PRL 110 (2012) 012032

Reaction Plane Detector, RPD, in the ZDC

Heavy ion collisions (and pp and p+Pb) show strong evidence for hydrodynamic evolution in the final state, observed with Fourier coefficients of azimuthal distributions v_n relative to "event plane" (defined by angle of maximum particle emission)

Measuring v₁ ("directed flow") is difficult without a direct measurement of the "reaction plane": available using correlated deflection of neutrons (first done at LHC by ALICE in 2015)

ZERO DEGREE CALORIMETERS + RP

- •When colliding ions, additional calorimeters are usually installed on the beamlines: the **Zero Degree Calorimeters (ZDCs)**
- •The ZDCs measure **spectator neutrons** that did not interact in the collision •The ZDC is installed in the Target Absorber for Neutrals (TAN), at ±140 m from ATLAS IP
-

Zero degree calorimeters + RPDs

- •When colliding ions, additional calorimeters are usually installed on the beamlines: the **Zero Degree Calorimeters (ZDCs)**
- •The ZDCs measure **spectator neutrons** that did not interact in the collision •The ZDC is installed in the Target Absorber for Neutrals (TAN), at ±140 m from ATLAS IP
-

ZDC: from neutron to electrical signal

- •The W absorber smashes the neutrons generating a high-energy particle shower
- •The charged fraction of the shower generates Cherenkov light in the fused-silica rods
- •A considerable fraction of the light is retained within the rods by Total Internal Reflection (TIR) and travels towards the extremities of the rods
- •At the top of the rods, the light is injected into an air-light guide, that focuses it over a PMT window \rightarrow the PMT converts the light into an **electrical signal**!

ZDC: from neutron to electrical signal

ZDC @ CERN SPS Test Beam, this summer

- **ZDC installed in the LHC - 1 month ago!**
- •Why a Cherenkov radiation and not directly a detector? With the TAN **radiation environment**, a PMT would not survive too close to the detector core

Reaction Plane Detector, RPD

ATLAS Run 3 RPD – Sheng Yang (NPRE+Physics)

Figure 2.17: Side-by-side diagram of the finalized ATLAS RPD for Run 3 (a) and the corresponding technical drawing (b). Note that the front panel was removed for demonstration. Taken from [39]

UIUC ATLAS - RL 9-3-2024

Integrated RPD + ZDC in ATLAS Run 3

ATLAS Run 3 ZDC+RPD $ZDC+RPD$ in TAN $ZDC+RPD$ Installation

UIUC ATLAS - RL 14 9-3-2024

ZDC CHALLENGES: RADIATION [a lot of]

To have stable operation - the zdc needs radiation hard materials

[Phys. Rev. Accel. Beams 25,](https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.25.091001) [091001 \(2022\)](https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.25.091001), Yang (NPRE grad), Tate (NPRE grad), RL et al

- CERN FLUKA team (F.Cerutti, M.S.Gilarte) provides detailed simulations of the radiation environment in the TAN
- Peak radiation load on the ZDC estimated to be of several **5++ MGy !!!**

•Benchmark against LHC Beam Loss Monitor data: **FLUKA can describe radiation levels in the LHC tunnel within 20% uncertainty**

UIUC ATLAS - RL 9-3-2024

- ▶ Increasing number of defects and color centers induced by radiation damage decreases the transmission
- ▶ Materials with a high purity level show a lower absorption and a better radiation hardness.
- ▶ In the UV region:
	- ▶ Saturation of absorbing defects by H_2
	- ▶ Decrease in transmittance more pronounced/rapid
- Our results represent the first study of radiation hardness of fused silica exposed to high energy hadron cocktail

Radiation Damage in Fused Silica

r. Frank Nürnberg | HQS Photonics SO | 20.10.2015

Schematics showing known defects to SiO4 tetrahedral characteristics (courtesy of Frank Nuernberg [Heraeus])

Radiation Damage in Fused Silica

from Sheng Yang's thesis

Figure 2.18: Comparison between brand new GE214 [41] fused quartz rods (right) and the same type of rods irradiated in the LHC during Run $1 (\sim 10 \text{ Mgy, left})$.

Irradiation of fused silica materials

•**Fused silica rods irradiated over 3 years (2016-2018) in the TAN (IP1), in a BRAN detector prototype**

- •Installed in addition to the **actual BRAN detector** (ion chamber) for p+p running only
	- •During HI the ZDC replaces the copper bars
- •Equipped w/ **different fused silica materials**

Heraeus Collaboration with

BRAN prototype

BRAN detector

Copper absorbers

TAN

Heraeus Collaboration with

Irradiation of fused silica materials

•**Fused silica rods irradiated over 3 years (2016-2018) in the TAN (IP1), in a BRAN detector prototype**

- •Installed in addition to the **actual BRAN detector** (ion chamber) for p+p running only
	- •During HI the ZDC replaces the copper bars
- •Equipped w/ **different fused silica materials**

- •**Detailed FLUKA simulations of the TAN allow for precise evaluation of dose deposited in the fused silica rods** ➡Possibility to determine the dose received by each rod
	- segment

Analysis of irradiated samples

BRAN detector BRAN prototype Copper absorbers Accelerator Floor 1 ი 8 $10⁷$ $10⁶$ Dose (Gy) 10^5 $10⁴$ $10³$ $\frac{1}{10^2}$ 14160 14152 14156 14160

- •The TAN is characterized by a **steep dose profile in the vertical direction**
	- **→ BRAN rods received dose** spanning **over four orders of magnitude**
- •Simulation of the **whole particle propagation from the interaction point to the TAN**
	- \rightarrow Beam configuration reproduced for every year of running - crucial input to describe the dose profile along the rods

Analysis of irradiated samples

Rad-hard fused silica materials: results

[Nuclear Inst. and Methods in Physics Research, A 1055 \(2023\)](https://doi.org/10.1016/j.nima.2023.168523) [168523, S.Yang, A.Tate, RL et al.](https://doi.org/10.1016/j.nima.2023.168523)

- •Unprecedented characterization of fused silica transmittance as a **function of irradiation, wavelength and material composition**
- •Samples irradiated up to several MGy

Rad-hard fused silica materials: results

[Nuclear Inst. and Methods in Physics Research, A 1055 \(2023\)](https://doi.org/10.1016/j.nima.2023.168523) [168523, S.Yang, A.Tate, RL et al.](https://doi.org/10.1016/j.nima.2023.168523)

- •Unprecedented characterization of fused silica transmittance as a **function of irradiation, wavelength and material**
- **composition**
- •Samples irradiated up to several MGy
- •**Remarkable radiation hardness**
- **of high-H2 load Spectrosil 2000**
- (very little damage up to the MGy scale)
- •Interesting **plateau for H2-free**
- **materials** after initial fast damage

• When two ultra relativistic Pb ions cross, their strong EM fields can interact even without nuclear overlap

ZDC DATA DRIVEN CALIBRATI

•The large photon fluxes at very low photon energies give a cross section for forward neutron production from EM dissociation (EMD) in each arm of about 200 barn

~17-18% in this case New data just collected in October! Performance currently being assessed!

•This process provides plenty of events with low number of neutrons, that can be used for **data driven calibration procedures**

Last Week at LHC BEAM POSITION WITH The Illinois RPD**ATLAS** RPD Side 1-2 Internal RPD Side 8-1 Centroid X [mm] RPD Average Reco Side 1-2 Fit: $y = -0.078x + 0.963$ Side 8-1 Fit: $y = 0.068 x + -0.938$ 40 -40 -20 20 0 ∆ Horizontal Xing from Nominal (CCC) [µrad]