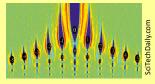
How to Present a Journal Club Talk


Celia M. Elliott
Department of Physics
University of Illinois at Urbana-Champaign

© 2024 The Board of Trustees of the University of Illinois All rights reserved.

1

Start with a "title" slide

"The Title of the Paper You're Presenting"
Complete Bibliographic Citation

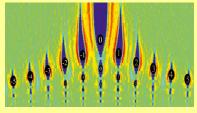
Presented by <Names of Team Members>
Department of Physics • University of Illinois Urbana-Champaign
PHYS 496, April 26, 2024

The title slide cues the audience "Get ready to listen" Include an interesting graphic to grab their attention

Your talk should answer the following questions:

- What is new about the paper? (Introduction)
- Where does it fit in the context of prior work? (Background)
- What methods were used? (Methods)
- What were the primary results? (Results)
- What do the authors think these results mean? (Conclusions)
- What is your assessment of the paper? (Critique)

Use this paradigm to organize your presentation


3

3

What about an "outline" slide?

Outline

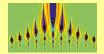
- Background and Introduction
- Methods
- Results
- Conclusions
- Critique
- Questions

SciTechDaily.co

I think the use of "outline" slides is vastly overrated—little meaningful content, eminently forgettable (cme)

If you feel compelled to provide an outline, make it content-rich

Today we'll discuss


Majorana fermions (MFs), theory background InSb nanowires used as "colliders"

Zero-energy peaks observed; believed to be electrons scattering off MFs

Could be used for solid-state qubits

Critique of paper

Audience questions

5

5

Consider an "outline" graphic at the bottom of each slide to orient listeners

Motivating statement, written as a sentence and left justified

<SLIDE STUFF>

Theory • InSb Nanowires • 0-energy Peaks • MF Observed • Applications • Critique • Q & A

Place a running outline at the margins of the slide (bottom or right margin)

Consider an "outline" graphic at the bottom of each slide to orient listeners

Motivating statement, written as a sentence and left justified

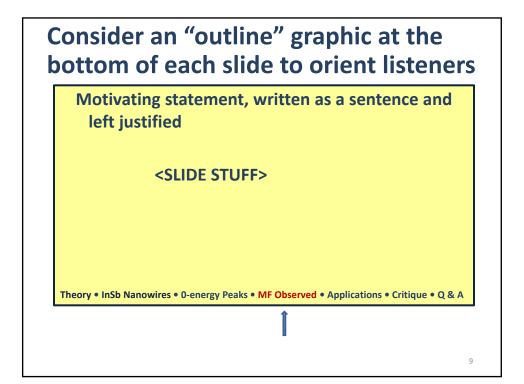
<SLIDE STUFF>

Theory • InSb Nanowires • 0-energy Peaks • MF Observed • Applications • Critique • Q & A

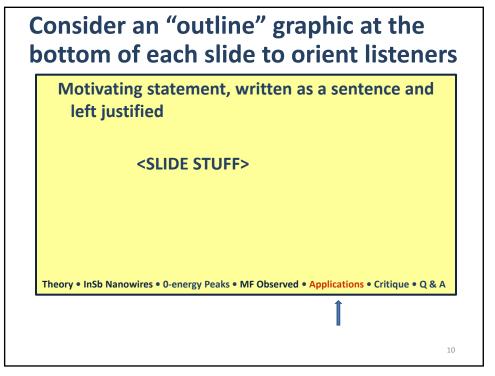
Be creative but not distracting

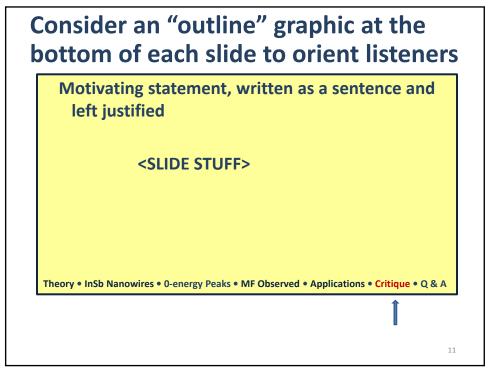
7

7

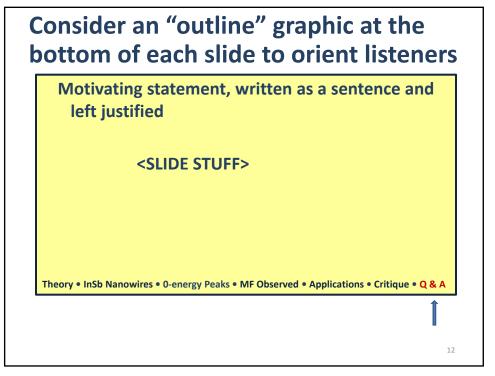

Consider an "outline" graphic at the bottom of each slide to orient listeners

Motivating statement, written as a sentence and left justified


<SLIDE STUFF>


Theory • InSb Nanowires • O-energy Peaks • MF Observed • Applications • Critique • Q & A

8



9

11

Allow about 2 min* per slide

Do the math:

15 min total – 2 min for Q&A = 12 min for "talk"

12-min talk ≈2 min/ "content" slide = 6-7 "content" slides

+ title slide + summary slide = 9 slides max.

*Allow more time for dense slides, equations, tabular data

13

13

How do you divide up your 7 "content" slides?

- 1. Problem/motivation/background—1 slide
- 2. What is new and why it's important—1 slide
- 3. Methods—1 slide
- 4. Results—1 slide
- 5. Discussion and conclusions—1 slide
- 6. Your critique of the paper—1 slide
- 7. Summary slide—1 slide

Note Item #6—the difference between a standard science talk and a journal-club talk

4

What is different about a JC talk?

Your critique of the paper

Put on your peer-reviewer hat

- Is the work valid?
- Does it represent a significant advance?
- Is it accessible?
- Are the figures well made and meaningful?
- Is the paper well written?
- How much of an impact has the paper had?

15

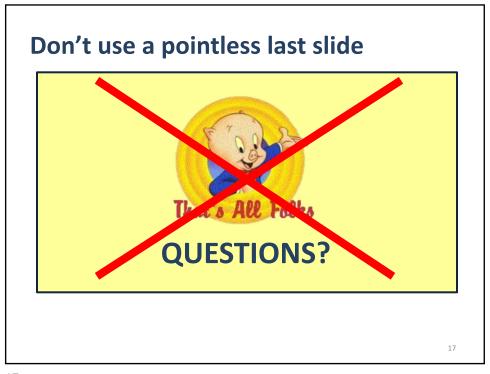
15

The last slide should be a summary that recaps the main points of your talk

First "observation" of Majorana fermions in semiconductor nanowires

Predicted in 1930s, never before observed

Used InSb nanowires as "nano-colliders"; zero-energy peaks observed


Generated quasiparticles of electrons, possible qubits for topological quantum computers

Didn't actually *observe* Majorana fermions; inferred them from electron scattering

cmelliot@illinois.edu

Put your contact information on the last slide

16

17

First observation of Majorana fermions in semiconductor nanowires

Predicted in 1930s, never before observed

Used InSb nanowires as "nano-colliders"; zero-energy peaks observed

Generated quasiparticles of electrons, possible qubits for topological quantum computers

Didn't actually "observe" Majorana fermions; inferred them from electron scattering

cmelliot@illinois.edu

*Reiterate your important points and stimulate audience questions

18

To recap...

Discuss all aspects of the paper—background, methods, results, conclusions

Be selective; distill your message to the essentials

Emphasize what is new or different

Present a critique of the paper—discuss strengths and weaknesses; evaluate its likely impact

Provide a title slide and a summary slide

No more than 9 slides

Rehearse and revise (shorten); mind the time

cmelliot@illinois.edu

19