If you’re the next Isaac Newton, you could probably get by with “reading to the walls.” If you’re not, you must learn how to communicate effectively in science if you’re going to be successful.
This semester, I’ll do my best to disabuse you of these “reasons.”
Executives and professors spend most of their time communicating—supervising, delegating, evaluating, clarifying, leading—all of which require clear, precise writing and speaking.

The higher you advance in your career, the more time you’ll spend communicating. Thus developing good communications skills are essential to your career success.
Show me a physicist who cannot communicate effectively, and I’ll show you a physicist who cannot get papers published, cannot get proposals funded, isn’t invited to give talks at meetings, cannot get hired, doesn’t get promoted...
2) I’m too busy...

Good communication skills save time and increase efficiency by eliminating mistakes and misunderstandings.

Good communication skills cut down on revising and editing time.
3) My word processor will correct my missteaks

Electronic checkers do not “read” your work; they look for suspect patterns based on algorithms

The best grammar checkers cannot help you with organization, emphasis, or tone

The best spell checkers cannot distinguish between “assess” and “asses”
4) Copy editors will correct my papers

Copy editors are a nearly extinct species at most journals nowadays; authors submit text that is usually published “as is,” mistakes and all.

Copy editors won’t see the slides for your talks, your proposals, your reports to funders, your email to collaborators or your supervisor.

Your reputation and success is in your hands and dependent on your communication skills.
5) I’m just not a good writer or speaker

Writing and speaking well are *crafts*, not innate talents

The same aptitudes that make you a good physicist (logic, rigor, attention to detail, pattern recognition) are *exactly* what you need to be a good scientific communicator

Like everything else in physics, communication skills require instruction and practice
As a scientist, you will communicate your ideas in all of the following venues:
• Presentations at group meetings, workshops, conferences, and job interviews.
• Publications in journals.
• Teaching and training.
• Grant proposals.
• Reviews of other people’s manuscripts and proposals.
• Applications and nominations.
• Evaluations and recommendations.
• Websites and electronic media.
Communication is not broadcasting—it is successful only when the receiver understands the content of a message as the sender intended it.
Explaining the *Challenger* disaster—when communication fails

January 28, 1986—Space Shuttle Challenger broke apart 73 seconds into its flight, killing all seven crew members aboard.

Report of the Presidential Commission on Space Shuttle Challenger Accident, 1986

An enormous gulf divides “talking” or “writing” and effective communication.
An enormous gulf divides “talking” or “writing” and effective communication. On the left is NASA’s explanation for the Challenger accident. On the right is Richard Feynman’s admittedly flawed experiment that galvanized the American public.

“I took this stuff I got out of your [O-ring] seal and I put it in ice water, and I discovered that when you put some pressure on it for a while and then undo it, it doesn't stretch back. It stays the same dimension. In other words, for a few seconds at least, and more seconds than that, there is no resilience in this particular material when it is at a temperature of 32 degrees. I believe that has some significance for our problem.”

You must provide explanations that are understandable and meaningful to your audience if you’re going to succeed as a science communicator.
Communication occurs in eight steps

1. You have an idea and an audience that you want to convey it to
2. You select a medium to transmit the idea
3. You encode the idea in a message
4. You transmit the message
5. Your audience receives the message
6. The audience decodes it (assigns meaning)
7. The audience transmits a message back to you about how they interpreted the message (feedback)
8. You confirm that the message has been understood as you intended or make corrections and send a new message

Some scientific communications (particularly written communications), have no mechanism for Steps 7 and 8. Consequently, writers must be particularly careful that the meaning they seek to convey is encoded precisely and unambiguously and in words that the receiver can understand.
Writing and speaking are practice-based skills; you learn how to do them by doing them.

There’s no substitute for practice.
Because we think in words, the act of expressing observation in language—of distilling amorphous thoughts into words and putting them into a grammatical construct that has a beginning, a middle, and an end—is a powerful tool for clarifying your thinking.

Translating your thoughts into words so that you can communicate them to someone else forces you
 to question your assumptions.
 to look for holes.
 to fill in gaps in your thinking.

“The act of composition disciplines the mind; writing is one way to go about thinking, and the practice and habit of writing not only drain the mind, but supply it too.” Strunk and White, The Elements of Style, 3rd ed., p. 70.

“It’s also through writing that we learn to articulate our thoughts clearly; our critical thinking is strengthened and clarified by our expression of it in writing.” J.L. Craig, “Writing strategies for graduate students,” Proc. ASEE Ann. Conf. & Exposition (Nashville, TN, ASEE, 2005).
Some common problems in novices’ scientific writing:
Inappropriate scope or emphasis
Lack of logical organization, cohesion, transitions
Organizing narratives chronologically
Wordiness and superfluous information
Imprecise or ambiguous language
Failure to adhere to scientific writing conventions
Poor use of graphics or presentation of data
“Mechanical” errors—in grammar, usage, spelling, punctuation
Underestimating the time needed to write, revise, and proofread

During this semester, we’ll concentrate on helping you to overcome these common problems in science writing.
Here’s a famous paper that has a writing flaw...can you spot it?

“Evidence of a positively charged electron was found in cosmic ray tracks produced in a vertical Wilson chamber. Of 1300 photographs, 15 were found to contain this unexplained particle. Analysis of the tracks indicates a particle of positive charge, having a magnitude comparable to that of an electron.”

This paragraph was taken from a paper published in 1933, announcing the discovery of the positron, for which Carl Anderson shared the 1936 Nobel Prize in Physics.

Now, admittedly, Carl Anderson won a Nobel Prize and I didn’t. But I still think this paragraph could (should) have been written more carefully.

Can you spot the problem?
“Evidence of a positively charged electron was found in cosmic ray tracks produced in a vertical Wilson chamber. Of 1300 photographs, 15 were found to contain this unexplained particle. Analysis of the tracks indicates a particle of positive charge, having a magnitude comparable to that of an electron.”

“Of 1300 photographs, 15 were found to contain this unexplained particle.”

The “photographs” did not contain any “particles” (other than in the sense that they were made of matter).

Tracks recorded on the photographic film could not be explained by the behavior of any known particles.
A huge scientific chasm separates

I have a photo of some weird tracks.

I have a photo of Bigfoot!

Write precisely!
They require having an adequate vocabulary and a sensitivity to words’ nuances. They require practice and iteration. They require constructive criticism from experts and peers. Train yourself to recognize excellence and emulate it. Seize every opportunity that presents itself to improve your skills. Your investment in improving them will affect your future success.

Practice may not make “perfect,” but it definitely makes “better.”
For good advice and further reading:

