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1) Test functions and distributions:

a) Let f(x) be a smooth function.

i) Show that f(x)δ(x) = f(0)δ(x). Deduce that

d

dx
[f(x)δ(x)] = f(0)δ′(x).

ii) We might also have used the product rule to conclude that

d

dx
[f(x)δ(x)] = f ′(x)δ(x) + f(x)δ′(x).

By integrating both against a test function, show this new expression for the

derivative of f(x)δ(x) is equivalent to that in part i).

b) In a paper1 that has recently been cited in the literature on topological insulators a

distribution δ(1/2)(x) is defined by setting

δ(1/2)(x)“=”

∫ ∞

−∞

dk

2π
|k|1/2eikx.

The scare quotes “. . .” around the equal sign are there because the Fourier transform

on the RHS is clearly divergent. We therefore need to decide how to interpret it. Let’s

try to define the evaluation of δ(1/2) on a test function ϕ(x) as
∫ ∞

−∞

δ(1/2)(x)ϕ(x) dx
def
= lim

µ→0+

{
∫ ∞

−∞

δ(1/2)µ (x)ϕ(x) dx

}

.

where

δ(1/2)µ (x)
def
=

∫ ∞

−∞

eikx|k|1/2e−µ|k| dk

2π

=

√

1

4π
(x2 + µ2)−3/4 cos

(

3

2
tan−1

(

x

µ

))

.

(Could you have evaluated this integral if I had not given you the answer?)

Plot some graphs of δ
(1/2)
µ (x) for various values of µ, and so get an idea of how it

behaves as the convergence factor e−µ|k| → 1. Deduce that

∫ ∞

−∞

δ(1/2)(x)ϕ(x) dx = −

√

1

8π

∫ ∞

−∞

1

|x|3/2
{ϕ(x)− ϕ(0)} dx.

(Hint: Observe that δ
(1/2)
µ (x) is the Fourier transform of a function that vanishes at

k = 0. What property of the the graph of δ
(1/2)
µ (x) does this imply?)

1H. Aratyn, Fermions from Bosons in 2+1 dimensions, Phys. Rev. D 28 (1983) 2016-18.
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c) Let ϕ(x) be a test function. Using the definition of the principal part integral , show

that
d

dt

{

P

∫ ∞

−∞

ϕ(x)

(x− t)
dx

}

= P

∫ ∞

−∞

ϕ(x)− ϕ(t)

(x− t)2
dx

To do this fix the value of the cutoff ǫ and then differentiate the resulting ǫ-regulated

integral, taking care to include the terms arising from the t dependence of the limits

at x = t± ǫ.

2) One-dimensional scattering theory: Consider the one-dimensional Schrödinger equa-

tion

−
d2ψ

dx2
+ V (x)ψ = Eψ, V (x) ∈ R,

where V (x) is zero except in a finite interval [−a, a] near the origin.

x

V(x)

a

L R

−a

Let L denote the left asymptotic region, −∞ < x < −a, and similarly letR denote∞ > x > a.

For E = k2 and k > 0 there will be scattering solutions of the form

ψk(x) =

{

eikx + rL(k)e
−ikx, x ∈ L,

tL(k)e
ikx, x ∈ R,

describing waves incident on the potential V (x) from the left. For k < 0 there will be

solutions with waves incident from the right

ψk(x) =

{

tR(k)e
ikx, x ∈ L,

eikx + rR(k)e
−ikx, x ∈ R.

The wavefunctions in [−a, a] will naturally be more complicated. Observe that [ψk(x)]
∗ is

also a solution of the Schrödinger equation.

By using properties of the Wronskian, show that:

a) |rL,R|
2 + |tL,R|

2 = 1,

b) tL(k)=tR(−k).

c) Deduce from parts a) and b) that |rL(k)| = |rR(−k)|.

d) Take the specific example of V (x) = λδ(x− b) with |b| < a. Compute the transmission

and reflection coefficients and hence show that rL(k) and rR(−k) may differ by a phase.
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3) Reduction of Order: Sometimes additional information about the solutions of a differ-

ential equation enables us to reduce the order of the equation, and so solve it.

a) Suppose that we know that y1 = u(x) is one solution to the equation

y′′ + V (x)y = 0.

By trying y = u(x)v(x) show that

y2 = u(x)

∫ x dξ

u2(ξ)

is also a solution of the differential equation. Is this new solution ever merely a constant

mutiple of the old solution, or must it be linearly independent? (Hint: evaluate the

Wronskian W (y2, y1).)

b) Suppose that we are told that the product, y1y2, of the two solutions to the equation

y′′ + p1y
′ + p2y = 0 is a constant. Show that this requires 2p1p2 + p′2 = 0.

c) By using ideas from part b) or otherwise, find the general solution of the equation

(x+ 1)x2y′′ + xy′ − (x+ 1)3y = 0.

4) Normal forms and the Schwarzian derivative: We saw in class that if y obeys a

second-order linear differential equation

y′′ + p1y
′ + p2y = 0

then we can make always make a substitution y = wỹ so that ỹ obeys an equation without

a first derivative:

ỹ′′ + q(x)ỹ = 0.

Suppose ψ(x) obeys a Schrödinger equation
(

−
1

2

d2

dx2
+ [V (x)−E]

)

ψ = 0.

a) Make a smooth and invertible change of independent variable by setting x = x(z) and

find the second order differential equation in z obeyed by ψ(z) ≡ ψ(x(z)). Find the

ψ̃(z) that obeys an equation with no first derivative. Show that this equation is
(

−
1

2

d2

dz2
+ (x′)2[V (x(z))− E]−

1

4
{x, z}

)

ψ̃(z) = 0,

where the primes denote differentiation with respect to z, and

{x, z} ≡
x′′′

x′
−

3

2

(

x′′

x′

)2

is called the Schwarzian derivative of x with respect to z. Schwarzian derivatives play

an important role in conformal field theory and string theory.
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b) Now combine a sequence of maps x→ z → w to establish Cayley’s identity

(

dz

dw

)2

{x, z} + {z, w} = {x, w}.

(Hint: If this takes you more than a line or two, or you find yourself using the hideous

expression for {x, z}, you are missing the point of the problem.)
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