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1) Critical Mass: An infinite slab of fissile material has thickness L. The neutron density

n(r) in the material obeys the equation

∂n

∂t
= D∇2n + λn+ µ,

where n is zero at the surface of the slab at x = 0, L. Here D is the neutron diffusion

constant, the term λn describes the creation of new neutrons by induced fission, and µ is

the rate of production per unit volume of neutrons by spontaneous fission. Assume that n

depends only on x and t, and that λ and µ are constants,

a) Expand both n and µ as series

n(x, t) =
∑
m

am(t)ϕm(x), µ =
∑
m

bmϕm(x)

where the ϕm are a complete orthonormal set of functions you think suitable for solving

the problem.

b) Find an explicit expression for the coefficients am(t) in terms of their intial values

am(0).

c) Determine the critical thickness, Lcrit, above which the slab will explode.

d) Assuming that L < Lcrit, find the equilibrium distribution neq(x) of neutrons in the

slab. (You may either sum your series expansion to get an explicit closed-form answer,

or use another (Green function?) method.)

2) Semi-infinite Rod: Consider the heat equation

∂θ

∂t
= D∇2θ, 0 < x < ∞

with the temperature θ(x, t) obeying the initial condition θ(x, 0) = θ0 for 0 < x < ∞, and

the boundary condition θ(0, t) = 0.

a) Show that the boundary condition at x = 0 can be satisfied at all times by introducing

a suitable mirror image of the initial data in the region −∞ < x < 0, and then

applying the heat kernel for the entire real line to this extended initial data. Show

that the solution of the semi-infinite rod problem can be expressed in terms of the

error function

erf x =
2√
π

∫ x

0

e−ξ2dξ.

b) Solve the same problem by using a Fourier integral expansion in terms of sin kx on the

half-line 0 < x < ∞ and obtaining the time evolution of the Fourier coefficients. Invert
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the transform and show that your answer reduces to that of part a). (Hint: replace

the initial condition by θ(x, 0) = θ0e
−ǫx, so that the Fourier transform converges, and

then take the limit ǫ → 0 at the end of your calculation.)

3) 2-D Electron Gas — an old Qual problem:

A two-dimensional gas of electrons is confined at the z = 0 interface between two semi-

infinite dielectric slabs. Each slab has dielectric constant ε. A perturbation of the electron

charge-density propagates as a wave through the electron gas. The surface-charge density

on the interface is therefore given by σ(x, t) = σ0 + σ1(x, t), where σ0 is constant and the

small-amplitude perturbation σ1 takes the form

σ1(x, t) = a exp{i(kx− ωt)}.

Assume that electrons act as classical particles of mass m with local velocity,

v(x, t) = v0 exp{i(kx− ωt)},

and that the only significant force is due to the electric field produced by the charge density

perturbation.

a) Use Laplace’s equation

−∇2φ = ε−1δ(z)σ(x, t)

to find the electrical potential φ(x, z, t) due to the charge.

b) From φ(x, z, t) find the electric field component Ex(x, z = 0, t) parallel to and within

the electron gas, and hence the acceleration ∂v(x, t)/∂t of the electrons.

c) Linearize the charge continuity equation

∂σ

∂t
+

∂σv

∂x
= 0,

and use it to relate a and v0. Hence show that the dispersion equation relating the

frequency ω to the wavenumber k is

ω2 = γ|k|.

Express the coefficient γ in terms of m, ε, σ0 and the electron charge q = −e.
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4) Seasonal Heat Waves: Suppose that the measured temperature of the air above the

arctic permafrost is expressed as a Fourier series

θ(t) = θ0 +
∞∑
n=1

θn cosnωt,

where T = 2π/ω is one year. Solve the heat equation for the soil temperature

∂θ

∂t
= κ

∂2θ

∂z2
, 0 < z < ∞

with this boundary condition, and find the temperature θ(z, t) at a depth z below the surface

as a function of time. Observe that the sub-surface temperature fluctuates with the same

period as that of the air, but with a phase lag that depends on the depth. Also observe that

the longest period temperature fluctuations penetrate the deepest into the ground. (Hint:

for each Fourier component, write θ as Re[An(z) exp inωt] where An is a complex function

of z.)
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