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Do all three problems. Check each step before proceeding as there will be no propagation

of errors. Marks will be subtracted for any equation that is obvious nonsense.

1) Green Function: Consider the homogeneous boundary value problem

−y′′ + m2y = f(x), y(a) = y(b) = 0. (⋆)

Here m2 is a positive constant.

a) Find suitable solutions yL(x) and yR(x) that can be used to construct a Green function

for this problem. [4 points]

b) Compute the Wronskian of your yL and yR. Verify that your answer is compatible with

the Weierstrass formula applied to (⋆). [4 points]

c) Construct the explicit Green function appropriate to this problem. [4 points]

d) Use your Green function to write down the solution of the boundary value problem as

the sum of two explicit integrals over complementary components of the unit interval.

[4 points]

e) Confirm that your solution y(x) obeys both boundary conditions, and that it does

indeed solve the original problem. [4 points]

2) Orthogonality and Completeness: The Macdonald functions Kλ(x) with purely imag-

inary index λ = iµ are real-valued when 0 < x < ∞, and obey Kiν(x) = K−iν(x). They also

possess the orthogonality property

1

π2

∫

∞

0

dx

x
Kiµ(x)Kiν(x) =

δ(µ − ν)

2ν sinh νπ
.

(You do not need to know anything about Macdonald functions other than what you have

just been told!)

a) Assuming that these functions form a complete set for expanding out functions on

x > 0, write down the completeness relation that expresses this fact. [10 points]

b) Given a function f(x) defined for x > 0, we form its Kontorovich-Lebedev transform

f̃(ν) by

f̃(ν) =
∫

∞

0

Kiν(x)f(x) dx.

Write down the expression for the inverse transform that allows us to recover f(x)

from f̃(ν). [10 points]
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3) Noether’s theorem: Recall (you do not need to prove this) that a translation-invariant

action integral

S[ϕa] =
∫

L(ϕa, (ϕa)ν) ddx, where (ϕa)µ ≡
∂ϕa

∂xµ

gives rise to a conserved canonical energy-momentum tensor

T µ
ν =

∑

a

∂L

∂(ϕa)µ

∂νϕa − Lδµ
ν .

a) Use this general formula with the assignment φ = ϕ1, ρ = ϕ2 to find the energy current

T µ
0, and the three components (i = 1, 2, 3) of the momentum current T µ

i, for the case

that S is the action

S[φ, ρ] = −
∫

dt d3x

{

ρ
∂φ

∂t
+

1

2
ρ(∇φ)2 + u(ρ)

}

for a barotropic fluid. [10 points]

b) Recall that the fluid velocity is given by v = ∇φ and show that the energy-momentum

conservation law

∂µT
µ

ν = 0

leads to both the momentum conservation equation

∂t {ρvi} + ∂j {ρvivj + δijP} = 0,

and to the energy conservation equation

∂tE + ∂i{vi(E + P )} = 0.

In this last equation you should have an explicit expression for the energy density E

in terms of ρ, φ etc. [8 points]

c) Explain physically why both E and P appear in the energy current. [2 points]

Hint: A useful formula for the pressure is

P = −

(

ρ
∂φ

∂t
+

1

2
ρ(∇φ)2 + u(ρ)

)

.

— End —
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