Physics 508 Handout MT

Mathematical Methods in Physics I courses.physics.illinois.edu/phys508/fa2019/

Prof. M. Stone 2117 ESB

Nov 6th 2019

Midterm Exam

University of Illinois

Do all **three** problems. Check each step before proceeding as there will be no propagation of errors. Marks will be subtracted for any equation that is obvious nonsense.

1) Green Function: Consider the homogeneous boundary value problem

$$-y'' + m^2y = f(x), \quad y(a) = y(b) = 0, \quad b > a.$$
 (*)

Here m^2 is a positive constant.

- a) Make use of hyperbolic functions such as $\sinh mx$ or $\cosh mx$ to write down solutions $y_L(x)$ and $y_R(x)$ that can be used to construct a Green function for this problem. [4 points]
- b) Compute the Wronskian W of your y_L and y_R . Verify that your answer is compatible with Liouville's formula for dW/dx as applied to (\star) . [4 points]
- c) Construct the explicit Green function appropriate to this problem. [4 points]
- d) Use your Green function to write down the solution of the boundary value problem as the sum of two explicit integrals over complementary components of the interval [a, b]. [4 points]
- e) Confirm that your solution y(x) obeys both boundary conditions, and, by differentiating, that it does indeed solve the original problem. [4 points]

Useful:

$$\sinh(-A) = -\sinh A,$$

 $\sinh(A - B) = \sinh A \cosh B - \sinh B \cosh A.$

- 2) Distributions: By making use of the idea of test functions
 - a) Show that

$$f(x)\delta'(x) = f(0)\delta'(x) - f'(0)\delta(x).$$
 [6 points]

- b) Explain what is meant by the weak derivative of a function or distribution. [4 points]
- c) As an illustration of a weak derivative, derive the equation

$$\frac{d}{dx}\ln|x| = P\left(\frac{1}{x}\right)$$
. [10 points]

The marks in this question are for the *logic* of what is being done, so you must write clear sentences explaining what you are doing, and why, at each step.

— Exam continues on next page —

3) Orthogonality and Completeness: The Macdonald functions $K_{\lambda}(x)$ with purely imaginary index $\lambda = i\mu$ are real-valued when $0 < x < \infty$, and obey $K_{i\nu}(x) = K_{-i\nu}(x)$. They also possess the orthogonality property

$$\frac{1}{\pi^2} \int_0^\infty \frac{dx}{x} K_{i\mu}(x) K_{i\nu}(x) = \frac{\delta(\mu - \nu)}{2\nu \sinh \nu \pi}.$$

(You do not need to know anything about Macdonald functions other than what you are told in the statement of this problem!)

- a) Assuming that these functions form a complete set for expanding out functions on x > 0, write down the *completeness relation* that expresses this fact. [10 points]
- b) Given a function f(x) defined for x > 0, we form its Kontorovich-Lebedev transform $\tilde{f}(\nu)$ by

$$\tilde{f}(\nu) = \int_0^\infty K_{i\nu}(x) f(x) \, dx.$$

Write down the expression for the inverse transform that allows us to recover f(x) from $\tilde{f}(\nu)$. [10 points]