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Do all three problems. Check each step before proceeding as there will be no propagation

of errors. Marks will be subtracted for any equation that is obvious nonsense.

1) Green Function: Consider the homogeneous boundary value problem

−y′′ +m2y = f(x), y(a) = y(b) = 0, b > a. (?)

Here m2 is a positive constant.

a) Make use of hyperbolic functions such as sinhmx or coshmx to write down solutions

yL(x) and yR(x) that can be used to construct a Green function for this problem. [4

points]

b) Compute the Wronskian W of your yL and yR. Verify that your answer is compatible

with Liouville’s formula for dW/dx as applied to (?). [4 points]

c) Construct the explicit Green function appropriate to this problem. [4 points]

d) Use your Green function to write down the solution of the boundary value problem as

the sum of two explicit integrals over complementary components of the interval [a, b].

[4 points]

e) Confirm that your solution y(x) obeys both boundary conditions, and, by differentiat-

ing, that it does indeed solve the original problem. [4 points]

Useful:

sinh(−A) = − sinhA,

sinh(A−B) = sinhA coshB − sinhB coshA.

2) Distributions: By making use of the idea of test functions

a) Show that

f(x)δ′(x) = f(0)δ′(x)− f ′(0)δ(x). [6 points]

b) Explain what is meant by the weak derivative of a function or distribution. [4 points]

c) As an illustration of a weak derivative, derive the equation

d

dx
ln |x| = P

(
1

x

)
. [10 points]

The marks in this question are for the logic of what is being done, so you must write clear

sentences explaining what you are doing, and why, at each step.
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3) Orthogonality and Completeness: The Macdonald functions Kλ(x) with purely imag-

inary index λ = iµ are real-valued when 0 < x <∞, and obey Kiν(x) = K−iν(x). They also

possess the orthogonality property

1

π2

∫ ∞
0

dx

x
Kiµ(x)Kiν(x) =

δ(µ− ν)

2ν sinh νπ
.

(You do not need to know anything about Macdonald functions other than what you are

told in the statement of this problem!)

a) Assuming that these functions form a complete set for expanding out functions on

x > 0, write down the completeness relation that expresses this fact. [10 points]

b) Given a function f(x) defined for x > 0, we form its Kontorovich-Lebedev transform

f̃(ν) by

f̃(ν) =
∫ ∞
0

Kiν(x)f(x) dx.

Write down the expression for the inverse transform that allows us to recover f(x)

from f̃(ν). [10 points]
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