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Do all three questions. Check each step before proceeding, there will be no propagation of

errors. Marks will be subtracted for any equation that is obvious nonsense.

1) Green function: Consider the homogeneous boundary value problem

−d
2y

dx2
= f(x), x ∈ [0, 1], y′(0) = y(1) = 0.

a) Construct the explicit Green function appropriate to this problem. [10 points]

b) Use your Green function to write down the solution of the boundary value problem as

the sum of two explicit integrals over complementary components of the unit interval.

[10 points]

c) Confirm that your solution y(x) obeys both boundary conditions, and by explicit dif-

ferentiation confirm that it does indeed solve the original problem. [10 points]

Now consider the inhomogeneous boundary value problem

−y′′ = f(x), y′(0) = A, y(1) = B.

d) Use the method based Lagrange’s identity to obtain the solution to this boundary value

problem. The points here are for exhibiting the method , so merely writing down the

solution will not earn any credit. [10 points]

2) First Integral: In the course of solving the Brachistochrone problem we considered the

functional

T [y] =
∫ a

0

√
1 + y′2

2gy
dx.

a) Write down and simplify the first integral for the corresponding Euler-Lagrange equa-

tion (You do not have to derive or write down the Euler-Lagrange equation itself).

[10 points]

b) In class we solved the Euler-Lagrange equation by showing that it implies that

d

dx

{
y(1 + y′2)

}
= 0.

Use your first integral to verify this claim. [10 points]
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3) Orthogonality and Completeness: The Conical functions ϕλ(x) are the solutions to

the differential equation
d

dx
(x2 − 1)

d

dx
ϕλ + (λ2 + 1

4
)ϕλ = 0

in the interval [1,∞] that obey the boundary condition ϕλ(1) = 1. The ϕλ(x) are real-

valued when λ2 is real and positive, and ϕλ(x) = ϕ−λ(x). The ϕλ(x) obey an orthogonality

condition ∫ ∞
1

ϕλ(x)ϕµ(x) dx =
1

λ tanh(πλ)
δ(λ− µ), λ, µ > 0,

The set {ϕλ : 0 ≤ λ <∞} is complete in L2[1,∞]. You do not need to know anything about

the conical functions beyond what you have just read.

a) Write down the corresponding completeness relation. [10 points].

b) The Mehler transform F (λ) of a function f(x) defined on [1,∞] is given by

F (λ)
def
=

∫ ∞
1

ϕλ(x)f(x) dx.

Use your completeness relation to write down the formula for the inverse Mehler trans-

form that expresses f(x) in terms of F (λ). [10 points].

To receive credit in parts (a) and (b), you must have the correct limits on any integrals or

sums that you write.
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