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Preface

This book is based on a two-semester sequence of courses taught to incoming
graduate students at the University of Illinois at Urbana-Champaign, pri-
marily physics students but also some from other branches of the physical
sciences. The courses aim to introduce students to some of the mathemat-
ical methods and concepts that they will find useful in their research. We
have sought enliven what the material by integrating the mathematics with
its applications. We therefore provide illustrative examples and problems
drawn from physics. Some of these illustrations are classical but many are
small parts of contemporary research papers. In the text and at the end
of each chapter we provide a collection of exercises and problems suitable
for homework assignments. The former are straightforward applications of
material presented in the text; the latter are intended to be interesting, and
take rather more thought and time.

We devote the first, and longest, part (Chapters 1 to 9, and the first
semester in the classroom) to traditional mathematical methods. We explore
the analogy between linear operators acting on function spaces and matrices
acting on finite dimensional spaces, and use the operator language to pro-
vide a unified framework for working with ordinary differential equations,
partial differential equations, and integral equations. The mathematical pre-
requisites are a sound grasp of undergraduate calculus (including the vector
calculus needed for electricity and magnetism courses), elementary linear al-
gebra, and competence at complex arithmetic. Fourier sums and integrals, as
well as basic ordinary differential equation theory, receive a quick review, but
it would help if the reader had some prior experience to build on. Contour
integration is not required for this part of the book.

The second part (Chapters 10 to 14) focuses on modern differential ge-
ometry and topology, with an eye to its application to physics. The tools of
calculus on manifolds, especially the exterior calculus, are introduced, and

vil



viii PREFACE

used to investigate classical mechanics, electromagnetism, and non-abelian
gauge fields. The language of homology and cohomology is introduced and
is used to investigate the influence of the global topology of a manifold on
the fields that live in it and on the solutions of differential equations that
constrain these fields.

Chapters 15 and 16 introduce the theory of group representations and
their applications to quantum mechanics. Both finite groups and Lie groups
are explored.

The last part (Chapters 17 to 19) explores the theory of complex variables
and its applications. Although much of the material is standard, we make use
of the exterior calculus, and discuss rather more of the topological aspects of
analytic functions than is customary.

A cursory reading of the Contents of the book will show that there is
more material here than can be comfortably covered in two semesters. When
using the book as the basis for lectures in the classroom, we have found it
useful to tailor the presented material to the interests of our students.
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Chapter 1

Calculus of Variations

We begin our tour of useful mathematics with what is called the calculus of
variations. Many physics problems can be formulated in the language of this
calculus, and once they are there are useful tools to hand. In the text and
associated exercises we will meet some of the equations whose solution will
occupy us for much of our journey.

1.1 What is it good for?

The classical problems that motivated the creators of the calculus of varia-
tions include:

i) Dido’s problem: In Virgil’s Aeneid, Queen Dido of Carthage must find
largest area that can be enclosed by a curve (a strip of bull’s hide) of
fixed length.

ii) Plateau’s problem: Find the surface of minimum area for a given set of
bounding curves. A soap film on a wire frame will adopt this minimal-
area configuration.

iii) Johann Bernoulli’s Brachistochrone: A bead slides down a curve with
fixed ends. Assuming that the total energy 2muv? + V() is constant,
find the curve that gives the most rapid descent.

iv) Catenary: Find the form of a hanging heavy chain of fixed length by
minimizing its potential energy.

These problems all involve finding maxima or minima, and hence equating
some sort of derivative to zero. In the next section we define this derivative,
and show how to compute it.
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1.2 Functionals

In variational problems we are provided with an expression J[y| that “eats”
whole functions y(z) and returns a single number. Such objects are called
functionals to distinguish them from ordinary functions. An ordinary func-
tion is a map f: R — R. A functional J is a map J: C*(R) — R where
C>(R) is the space of smooth (having derivatives of all orders) functions.
To find the function y(x) that maximizes or minimizes a given functional
J[y] we need to define, and evaluate, its functional derivative.

1.2.1 The functional derivative

We restrict ourselves to expressions of the form
T2
/ " n
1

where f depends on the value of y(z) and only finitely many of its derivatives.
Such functionals are said to be local in z.

Consider first a functional J = [ fdz in which f depends only z, y and
y'. Make a change y(x) — y(z) + en(z), where ¢ is a (small) z-independent
constant. The resultant change in J is

z2

Jly+en —Jyl = {f(x,y+eny +en) = fx,y,9)} do
r2 0 dn 0

- R [ (-2 3o

z1

If n(z1) = n(xz) = 0, the variation dy(z) = en(x) in y(z) is said to have
“fixed endpoints.” For such variations the integrated-out part [...J7? van-
ishes. Defining 0.J to be the O(¢e) part of J[y + en] — J[y], we have

- [onld-4)e
_ / 5y/(x) (5%)) dz. (1.2)

T
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i _of 4 (0
sy(z) ~ Oy (8?;) (13)

is called the functional (or Fréchet) derivative of J with respect to y(x). We
can think of it as a generalization of the partial derivative 0.J/0y;, where the

[Pk

discrete subscript “7” on y is replaced by a continuous label “z,” and sums
over ¢ are replaced by integrals over x:

6] = Zayl %/ dx (%) oy(z). (1.4)

1.2.2 The Euler-Lagrange equation

The function

Suppose that we have a differentiable function J(y1,ys, - . ., yn) of n variables
and seek its stationary points — these being the locations at which J has its
maxima, minima and saddlepoints. At a stationary point (y1,ya, ..., y,) the

variation
" 9]
0J = —0y; 1.

must be zero for all possible dy;. The necessary and sufficient condition for
this is that all partial derivatives 9.J/0y;, 1 = 1,...,n be zero. By analogy,
we expect that a functional J[y] will be stationary under fixed-endpoint vari-
ations y(z) — y(z)+Jdy(z), when the functional derivative §.J/dy(z) vanishes
for all z. In other words, when

af d(&f

8y(x) - — ay/(x)) = 0, T <xT < To. (16)

The condition (1.6) for y(z) to be a stationary point is usually called the
Fuler-Lagrange equation.

That §.J/0y(z) = 0 is a sufficient condition for d.J to be zero is clear
from its definition in (1.2). To see that it is a necessary condition we must
appeal to the assumed smoothness of y(x). Consider a function y(z) at which
J[y] is stationary but where §.J/dy(z) is non-zero at some xy € [z1,22].
Because f(y,4',x) is smooth, the functional derivative 6.J/dy(z) is also a
smooth function of z. Therefore, by continuity, it will have the same sign
throughout some open interval containing xy. By taking dy(z) = en(z) to be
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Figure 1.1: Soap film between two rings.

zero outside this interval, and of one sign within it, we obtain a non-zero 6.J
— in contradiction to stationarity. In making this argument, we see why it
was essential to integrate by parts so as to take the derivative off dy: when
y is fixed at the endpoints, we have [0y’ dz = 0, and so we cannot find a §y’
that is zero everywhere outside an interval and of one sign within it.

When the functional depends on more than one function ¥, then station-
arity under all possible variations requires one equation

6J _of d [(Of\ _
Syi(z) Oy da (8—y’) =0 (1.7)

for each function y;(x).
If the function f depends on higher derivatives, y”, y®, etc., then we
have to integrate by parts more times, and we end up with

_oJ _of d [Of a2 [ of & [ of

1.2.3 Some applications

Now we use our new functional derivative to address some of the classic
problems mentioned in the introduction.

Example: Soap film supported by a pair of coaxial rings (figure 1.1) This
a simple case of Plateau’s problem.  The free energy of the soap film is
equal to twice (once for each liquid-air interface) the surface tension o of the
soap solution times the area of the film. The film can therefore minimize its
free energy by minimizing its area, and the axial symmetry suggests that the
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minimal surface will be a surface of revolution about the z axis. We therefore
seek the profile y(x) that makes the area

Jy] :27r/ y\/1+y?dx (1.9)

of the surface of revolution the least among all such surfaces bounded by
the circles of radii y(z1) = y; and y(z3) = yo. Because a minimum is a
stationary point, we seek candidates for the minimizing profile y(x) by setting
the functional derivative 6.J/dy(x) to zero.

We begin by forming the partial derivatives

of , Of 2myy’
= =om/1+y?, == L 1.10
dy o oy V14 y? (1.10)

and use them to write down the Euler-Lagrange equation

/
Jidyro L) o, (1.11)
dz \ \/1 4 9

Performing the indicated derivative with respect to = gives

N2 " N2,
1442 = (v __ Yy - y(y )/2y3/2 o (1.12)
Vi+y? J1i+y? (+y7)
After collecting terms, this simplifies to

1 B yy//
Vit Wy

The differential equation (1.13) still looks a trifle intimidating. To simplify
further, we multiply by 4 to get

= 0. (1.13)

/

Y yy'y"

Vity? (+y?)?
d y

= | —=—. 1.14
dx ( /1+y/2> ( )

The solution to the minimization problem therefore reduces to solving

Y

Viey

0 =

(1.15)
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where k is an as yet undetermined integration constant. Fortunately this
non-linear, first order, differential equation is elementary. We recast it as

Ca— (1.16)

and separate variables

/dz:/\/% (1.17)

We now make the natural substitution y = k cosh ¢, whence

/d:): = /-f/dt. (1.18)

Thus we find that x + a = kt, leading to

y:mcoshx:a. (1.19)

We select the constants k and a to fit the endpoints y(x;) = y; and y(z3) =
Ya-

VY

Figure 1.2: Hanging chain

Example: Heavy Chain over Pulleys. We cannot yet consider the form of
the catenary, a hanging chain of fixed length, but we can solve a simpler
problem of a heavy flexible cable draped over a pair of pulleys located at
x = =+L, y = h, and with the excess cable resting on a horizontal surface as
illustrated in figure 1.2.
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t=L/k

Figure 1.3: Intersection of y = ht/L with y = cosh .

The potential energy of the system is

L
PE. = E mgy = pg/ yv/1+ (y')%2dx + const. (1.20)
)

Here the constant refers to the unchanging potential energy

h
2 % / pgy dy = pgh® (1.21)
0

of the vertically hanging cable. The potential energy of the cable lying on the
horizontal surface is zero because y is zero there. Notice that the tension in
the suspended cable is being tacitly determined by the weight of the vertical
segments.

The Euler-Lagrange equations coincide with those of the soap film, so

(x+a)

y = K cosh (1.22)

where we have to find x and a. We have

h = kcosh(—L +a)/k,
= kcosh(L +a)/k, (1.23)
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X

® P

y « (@b)

Figure 1.4: Bead on a wire.

so a =0 and h = kcosh L/k. Setting t = L/k this reduces to

(%) t = cosht. (1.24)

By considering the intersection of the line y = ht/L with y = cosht (figure
1.3) we see that if h/L is too small there is no solution (the weight of the
suspended cable is too big for the tension supplied by the dangling ends)
and once h/L is large enough there will be two possible solutions. Further
investigation will show that the solution with the larger value of k is a point
of stable equilibrium, while the solution with the smaller « is unstable.
Example: The Brachistochrone. This problem was posed as a challenge by
Johann Bernoulli in 1696. He asked what shape should a wire with endpoints
(0,0) and (a, b) take in order that a frictionless bead will slide from rest down
the wire in the shortest possible time (figure 1.4). The problem’s name comes
from Greek: [paxtoTos means shortest and yporvos means time.

When presented with an ostensibly anonymous solution, Johann made his
famous remark: “Tanquam ex unguem leonem” (I recognize the lion by his
clawmark) meaning that he recognized that the author was Isaac Newton.

Johann gave a solution himself, but that of his brother Jacob Bernoulli
was superior and Johann tried to pass it off as his. This was not atypical.
Johann later misrepresented the publication date of his book on hydraulics
to make it seem that he had priority in this field over his own son, Daniel
Bernoulli.
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(0,0) X

(x,y)

@

(a,b)

y

Figure 1.5: A wheel rolls on the x axis. The dot, which is fixed to the rim of
the wheel, traces out a cycloid.

We begin our solution of the problem by observing that the total energy
1 1
E = om(i* +9°) = mgy = 5ma*(1 +y) — mgy, (1.25)

of the bead is constant. From the initial condition we see that this constant
is zero. We therefore wish to minimize

r— [T / Lo [ 1/ W

so as find y(x), given that y(0) = 0 and y(a) = b. The Euler-Lagrange
equation is

1
yy" + 5(1 +y?) =0. (1.27)

Again this looks intimidating, but we can use the same trick of multiplying
through by 1/ to get

Y (yy” + %(1 + y’z)) = %% {v@+y?)} =0 (1.28)
Thus
2¢ = y(1 +y). (1.29)
This differential equation has a parametric solution
x = c(f — sin0),

y = c(1 — cosb), (1.30)
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(as you should verify) and the solution is the cycloid shown in figure 1.5.
The parameter ¢ is determined by requiring that the curve does in fact pass
through the point (a,b).

1.2.4 First integral

How did we know that we could simplify both the soap-film problem and
the brachistochrone by multiplying the Euler equation by 3'? The answer
is that there is a general principle, closely related to energy conservation in
mechanics, that tells us when and how we can make such a simplification.
The y' trick works when the f in [fdx is of the form f(y,y'), i.e. has no
explicit dependence on x. In this case the last term in

af _ ,of  ,0f  Of
%—ya Y5 o (1.31)

is absent. We then have

(f 8f) - ,g+,,g_,,g_,d<8f)
Vo) T Vo, Ve Ve, Y oy

of d [(0f
"= - (== 1.32
’ (8?; dx (8?/))’ 32
and this is zero if the Euler-Lagrange equation is satisfied.
The quantity
8f

is called a first integral of the Euler-Lagrange equation. In the soap-film case

(1.33)

2

_ _ y
f— y =yv1 \/1+ e (1.34)

When there are a number of dependent variables y;, so that we have

Jly1, Yo, - - - Yn :/f(yl,yz,---yn;yi,yé,---yil)dff (1.35)

then the first integral becomes

d
I:f—Zyga—;{. (1.36)
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Again

ar — d ,O0f
dr %(f_zljylﬁ—y)

— Z (af+ Of _ n0f _d (Of

of d [O0f
= ! —— | = 1.37
ot (a5~ () 30
and this zero if the Euler-Lagrange equation is satisfied for each ;.

Note that there is only one first integral, no matter how many y;’s there
are.

1.3 Lagrangian Mechanics

In his Mécanique Analytique (1788) Joseph-Louis de La Grange, following
Jean d’Alembert (1742) and Pierre de Maupertuis (1744), showed that most
of classical mechanics can be recast as a variational condition: the principle
of least action. The idea is to introduce the Lagrangian function L =T —V
where T is the kinetic energy of the system and V' the potential energy, both
expressed in terms of generalized co-ordinates ¢° and their time derivatives
¢*. Then, Lagrange showed, the multitude of Newton’s F = ma equations,
one for each particle in the system, can be reduced to

d (OL\ 0L
= (aqi) i (1.38)

one equation for each generalized coordinate gq. Quite remarkably — given
that Lagrange’s derivation contains no mention of maxima or minima — we
recognise that this is precisely the condition that the action functional

tfinal . i
Sla] = / L(t,q";q") dt (1.39)

tinitial

be stationary with respect to variations of the trajectory ¢'(t) that leave the
initial and final points fixed. This fact so impressed its discoverers that they
believed they had uncovered the unifying principle of the universe. Mauper-
tuis, for one, tried to base a proof of the existence of God on it. Today the
action integral, through its starring role in the Feynman path-integral for-
mulation of quantum mechanics, remains at the heart of theoretical physics.
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Figure 1.6: Atwood’s machine.

1.3.1 One degree of freedom

We shall not attempt to derive Lagrange’s equations from d’Alembert’s ex-
tension of the principle of virtual work — leaving this task to a mechanics
course — but instead satisfy ourselves with some examples which illustrate
the computational advantages of Lagrange’s approach, as well as a subtle
pitfall.

Consider, for example, Atwood’s Machine (figure 1.6). This device, in-
vented in 1784 but still a familiar sight in teaching laboratories, is used to
demonstrate Newton’s laws of motion and to measure g. It consists of two
weights connected by a light string of length [ which passes over a light and
frictionless pulley

The elementary approach is to write an equation of motion for each of
the two weights

mity = mug—1T,
We then take into account the constraint #; = —Z» and eliminate 5 in favour
of Lf‘li
mity = myg—1T,

—mgli'l = mgg—T. (141)
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Finally we eliminate the constraint force, the tension 7', and obtain the
acceleration

(m1 + mg)i’l = (m1 — mg)g. (142)
Lagrange’s solution takes the constraint into account from the very be-

ginning by introducing a single generalized coordinate ¢ = xy = | — x5, and
writing

1 )
L=T-V= §(m1 +my)§® — (ma — ma)gq. (1.43)

From this we obtain a single equation of motion

d (OL\ 0L ._
dt ((’kji) “og 0 7 mAma)i=(m—ma)g. (1.44)

The advantage of the the Lagrangian method is that constraint forces, which
do no net work, never appear. The disadvantage is exactly the same: if we
need to find the constraint forces — in this case the tension in the string —
we cannot use Lagrange alone.

Lagrange provides a convenient way to derive the equations of motion in
non-cartesian co-ordinate systems, such as plane polar co-ordinates.

A
y
ay

Figure 1.7: Polar components of acceleration.

Consider the central force problem with F, = —0,V (r). Newton’s method
begins by computing the acceleration in polar coordinates. This is most
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easily done by setting z = re? and differentiating twice:

z = (r+ iré)ew,
5= (F—r0)e +i(200 4 rh)e”. (1.45)

Reading off the components parallel and perpendicular to e gives the radial
and angular acceleration

a, = f—r@Q,
ag = r0+2r0. (1.46)

Newton’s equations therefore become

m(i —re?) = _%_‘Z
m(rd +2i0) = 0, = %(mrzé):O (1.47)

Setting [ = mr26, the conserved angular momentum, and eliminating 6 gives

mi — — = ——. (1.48)
(If this were Kepler’s problem, where V' = GmM /r, we would now proceed
to simplify this equation by substituting » = 1/u, but that is another story.)

Following Lagrange we first compute the kinetic energy in polar coordi-
nates (this requires less thought than computing the acceleration) and set

L=T—-V-= %m(ﬁ + 1207 — V(). (1.49)

The Euler-Lagrange equations are now

L L .
d <8 ) a—:O, = mf—mr92+a—vz(),

dt \or ) or or
d (OL\ OL d. 9
= (5) ~ 5 = 0, = E(mr 0) =0, (1.50)

and coincide with Newton’s.
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The first integral is
0L .0L

EFE = 7r—+4+60——-1L
or 00
1 .
= §m(7‘“2 +7%20%) + V(r). (1.51)
which is the total energy. Thus the constancy of the first integral states that
dFE
— =0 1.52
dt Y ( )

or that energy is conserved.

Warning: We might realize, without having gone to the trouble of deriving
it from the Lagrange equations, that rotational invariance guarantees that
the angular momentum [ = mr20 is constant. Having done so, it is almost
irresistible to try to short-circuit some of the labour by plugging this prior
knowledge into

L= %m(ﬁ +720%) -V (r) (1.53)

S0 as to eliminate the variable 0 in favour of the constant . If we try this we

get
2 1 I?

? .9
L— 5mr + 52 V(r). (1.54)
We can now directly write down the Lagrange equation for r, which is
2 + oV
F — = ——. 1.55
mr mr3 or (1.35)

Unfortunately this has the wrong sign before the [2/mr3 term! The lesson is
that we must be very careful in using consequences of a variational principle
to modify the principle. It can be done, and in mechanics it leads to the
Routhian or, in more modern language to Hamiltonian reduction, but it
requires using a Legendre transform. The reader should consult a book on
mechanics for details.

1.3.2 Noether’s theorem
The time-independence of the first integral

d [ 0L
- {qa—q - L} =0, (1.56)
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and of angular momentum
d {mr?0} = 0 (1.57)
J— /r’ = .
att" ’
are examples of conservation laws. We obtained them both by manipulating
the Euler-Lagrange equations of motion, but also indicated that they were

in some way connected with symmetries. One of the chief advantages of a
variational formulation of a physical problem is that this connection

Symmetry < Conservation Law

can be made explicit by exploiting a strategy due to Emmy Noether. She
showed how to proceed directly from the action integral to the conserved
quantity without having to fiddle about with the individual equations of
motion. We begin by illustrating her technique in the case of angular mo-
mentum, whose conservation is a consequence the rotational symmetry of
the central force problem. The action integral for the central force problem
is

T (1 '
S = / {im(fz +726?) — V(r)} dt. (1.58)
0
Noether observes that the integrand is left unchanged if we make the variation
0(t) — 0(t) + e (1.59)

where « is a fixed angle and ¢ is a small, time-independent, parameter. This
invariance is the symmetry we shall exploit. It is a mathematical identity:
it does not require that r and 6 obey the equations of motion. She next
observes that since the equations of motion are equivalent to the statement
that S is left stationary under any infinitesimal variations in r and 6, they
necessarily imply that S is stationary under the specific variation

0(t) — 0(t) + e(t)a (1.60)

where now ¢ is allowed to be time-dependent. This stationarity of the action
is no longer a mathematical identity, but, because it requires r, 6, to obey
the equations of motion, has physical content. Inserting 6 = £(¢)« into our
expression for S gives

08 = a/OT {mrzé} edt. (1.61)
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Note that this variation depends only on the time derivative of €, and not ¢
itself. This is because of the invariance of S under time-independent rota-
tions. We now assume that £(t) = 0 at ¢ = 0 and ¢t = T, and integrate by
parts to take the time derivative off € and put it on the rest of the integrand:

68 = —a/ {%(mﬁé)} e(t) dt. (1.62)

Since the equations of motion say that S = 0 under all infinitesimal varia-
tions, and in particular those due to any time dependent rotation (t)«, we
deduce that the equations of motion imply that the coefficient of €(t) must
be zero, and so, provided r(t), 6(t), obey the equations of motion, we have

d

mr?0). (1.63)
As a second illustration we derive energy (first integral) conservation for
the case that the system is invariant under time translations — meaning
that L does not depend explicitly on time. In this case the action integral
is invariant under constant time shifts ¢ — ¢ + ¢ in the argument of the

dynamical variable:
q(t) = q(t +¢) =~ q(t) + 4. (1.64)

The equations of motion tell us that that the action will be stationary under
the variation

dq(t) = e(t)q, (1.65)

where again we now permit the parameter € to depend on t. We insert this
variation into

T
S = / Ldt (1.66)
0
and find .
oL. oOL,. ..
08 = /0 {8_qu + a—q,(q»s + qe)} dt. (1.67)

This expression contains undotted £’s. Because of this the change in S is not
obviously zero when ¢ is time independent — but the absence of any explicit
t dependence in L tells us that

dL 9L . 0L,



18 CHAPTER 1. CALCULUS OF VARIATIONS

As a consequence, for time independent e, we have

55 = /OT {g%} dt = e[L]T, (1.69)

showing that the change in S comes entirely from the endpoints of the time
interval. These fixed endpoints explicitly break time-translation invariance,
but in a trivial manner. For general £(t) we have

T dL 0L ..
6S —/0 {6(1&)E + a—q,qe} dt. (1.70)

This equation is an identity. It does not rely on ¢ obeying the equation of
motion. After an integration by parts, taking £(t) to be zero at t = 0,7, it

is equivalent to
rood oL .

Now we assume that ¢(t) does obey the equations of motion. The variation
principle then says that 65 = 0 for any (¢), and we deduce that for ¢(t)
satisfying the equations of motion we have

d oL .

The general strategy that constitutes “Noether’s theorem” must now be
obvious: we look for an invariance of the action under a symmetry trans-
formation with a time-independent parameter. We then observe that if the
dynamical variables obey the equations of motion, then the action principle
tells us that the action will remain stationary under such a variation of the
dynamical variables even after the parameter is promoted to being time de-
pendent. The resultant variation of S can only depend on time derivatives of
the parameter. We integrate by parts so as to take all the time derivatives off
it, and on to the rest of the integrand. Because the parameter is arbitrary,
we deduce that the equations of motion tell us that that its coefficient in the
integral must be zero. This coefficient is the time derivative of something, so
this something is conserved.

1.3.3 Many degrees of freedom

The extension of the action principle to many degrees of freedom is straight-
forward. As an example consider the small oscillations about equilibrium of
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a system with N degrees of freedom. We parametrize the system in terms of
deviations from the equilibrium position and expand out to quadratic order.
We obtain a Lagrangian

N ST
L=) 5Myd'd = 5Vid'd ¢, (1.73)
ij=1

where M;; and Vj; are N x N symmetric matrices encoding the inertial and
potential energy properties of the system. Now we have one equation

d (OL\ 0L & _ _
= — = ) )
0"dt(a¢) o > (Myd +Vid) (1.74)

j=1

for each 1.

1.3.4 Continuous systems

The action principle can be extended to field theories and to continuum me-
chanics. Here one has a continuous infinity of dynamical degrees of freedom,
either one for each point in space and time or one for each point in the mate-
rial, but the extension of the variational derivative to functions of more than
one variable should possess no conceptual difficulties.

Suppose we are given an action functional S[p] depending on a field ¢(x#)
and its first derivatives

Oy
Here z#, = 0,1, ...,d, are the coordinates of d + 1 dimensional space-time.

It is traditional to take 2° =t and the other coordinates spacelike. Suppose
further that

Sle] = /Ldt = /E(x“,gp,gpu) dtle, (1.76)

where L is the Lagrangian density, in terms of which
L:/LWL (1.77)

and the integral is over the space coordinates. Now

5 = [{aeto)g 2+ dtentan g p e

=[50 {5507 o (aj£<>)}d )
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In going from the first line to the second, we have observed that

S(pu(a)) = o bipla) (1.79)

and used the divergence theorem,

04" +1 /
n = A 1.
/Q (01’“) A" ” n,ds, (1.80)

where () is some space-time region and 0} its boundary, to integrate by
parts. Here dS is the element of area on the boundary, and n, the outward
normal. As before, we take d¢ to vanish on the boundary, and hence there
is no boundary contribution to variation of S. The result is that

o5 oL 0 ( oL )
Sp(x)  Op(x)  Oxr O, (x)

and the equation of motion comes from setting this to zero. Note that a sum
over the repeated coordinate index p is implied. In practice it is easier not to
use this formula. Instead, make the variation by hand—as in the following
examples.

Example: The Vibrating string. The simplest continuous dynamical system
is the transversely vibrating string. We describe the string displacement by

y(x,t).

(1.81)

Figure 1.8: 'Transversely vibrating string

Let us suppose that the string has fixed ends, a mass per unit length
of p, and is under tension 7. If we assume only small displacements from
equilibrium, the Lagrangian is

L 1y 1. .
L:/ dx{—py — =Ty } (1.82)
; 2 )
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The dot denotes a partial derivative with respect to ¢, and the prime a partial
derivative with respect to x. The variation of the action is

L
08 = // dtdz {py oy — Ty'6y'}
0

= //0 dtdz {dy(z,t) (—py + Ty")} . (1.83)

To reach the second line we have integrated by parts, and, because the ends
are fixed, and therefore oy = 0 at x = 0 and L, there is no boundary term.
Requiring that 45 = 0 for all allowed variations dy then gives the equation
of motion

pi—Ty" =0 (1.84)

This is the wave equation describing transverse waves propagating with speed
¢ =+/T/p. Observe that from (1.83) we can read off the functional derivative
of S with respect to the variable y(z,t) as being

0S
oy(z,t)

In writing down the first integral for this continuous system, we must
replace the sum over discrete indices by an integral:

E:Zqig—i—L%/dx {g(x)5§é>} — L. (1.86)

When computing §L/dgy(x) from

L /Ld Loty
p— :I/’ —_— PR
i 5P =5TY s

we must remember that it is the continuous analogue of dL/0¢;, and so, in
contrast to what we do when computing §5/dy(x), we must treat y(x) as a
variable independent of y(x). We then have

= —pij(x, ) + Ty (z,1). (1.85)

)
— = py(z), 1.87
5302) py(x) (1.87)
leading to
B 1 -2 1 2
E = de < =py~+ =Ty~ 5. (1.88)
0 2 2

This, as expected, is the total energy, kinetic plus potential, of the string.
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The energy-momentum tensor

If we consider an action of the form

S = /E(go,gou) d iy, (1.89)

in which £ does not depend explicitly on any of the co-ordinates x*, we may
refine Noether’s derivation of the law of conservation total energy and obtain
accounting information about the position-dependent energy density. To do
this we make a variation of the form

p(z) = pla’ +e(2)) = p(a") + e"(2)dup + O(|2]?), (1.90)
where € depends on o = (2°,...,2%). The resulting variation in S is
oL oL
— PN’ I d+1
58S /{&05 Outp + 8%8,,(5 8M<p)}d x
0 , oL
= /5“(@@ {5% — 8%8”} dty. (1.91)

When ¢ satisfies the the equations of motion this 4.5 will be zero for arbitrary

e#(x). We conclude that
0 oL

The (d + 1)-by-(d + 1) array of functions

T, = %8“4,0 . (1.93)

is known as the canonical energy-momentum tensor because the statement
0,T", =0 (1.94)

often provides book-keeping for the flow of energy and momentum.
In the case of the vibrating string, the u = 0,1 components of 9,7%, = 0
become the two following local conservation equations:

0 p.o T p 0 N
E{Ey 5y }+ax{ Tyy'} =0, (1.95)
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and

0 . 0 o T
PR R {g?f + 5?/2} = 0. (1.96)

It is easy to verify that these are indeed consequences of the wave equation.
They are “local” conservation laws because they are of the form

9
ot

where ¢ is the local density, and J the flux, of the globally conserved quantity
Q= gd?z. In the first case, the local density g is

+divJ =0, (1.97)

70 =Ly L (1.98)
2 2
which is the energy density. The energy flux is given by T, = —T'yy’, which
is the rate that a segment of string is doing work on its neighbour to the right.
Integrating over x, and observing that the fixed-end boundary conditions are
such that

L
0 ) .
/ By LYy} de = [—Tyy15 =0, (1.99)
0
gives us
d (* T
o {g?f + Ey’Q} dr =0, (1.100)
0

which is the global energy conservation law we obtained earlier.

The physical interpretation of T% = —pyy’, the locally conserved quan-
tity appearing in (1.96) is less obvious. If this were a relativistic system,
we would immediately identify [ 7% dx as the az-component of the energy-
momentum 4-vector, and therefore T as the density of z-momentum. Now
any real string will have some motion in the x direction, but the magni-
tude of this motion will depend on the string’s elastic constants and other
quantities unknown to our Lagrangian. Because of this, the T derived
from L cannot be the string’s z-momentum density. Instead, it is the den-
sity of something called pseudo-momentum. The distinction between true
and pseudo-momentum is best appreaciated by considering the correspond-
ing Noether symmetry. The symmetry associated with Newtonian momen-
tum is the invariance of the action integral under an z translation of the
entire apparatus: the string, and any wave on it. The symmetry associ-
ated with pseudo-momentum is the invariance of the action under a shift
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y(r) = y(xr — a) of the location of the wave on the string — the string it-
self not being translated. Newtonian momentum is conserved if the ambient
space is translationally invariant. Pseudo-momentum is conserved only if the
string is translationally invariant — i.e. if p and 7" are position independent.
A failure to realize that the presence of a medium (here the string) requires us
to distinguish between these two symmetries is the origin of much confusion
involving “wave momentum.”

Maxwell’s equations

Michael Faraday and and James Clerk Maxwell’s description of electromag-
netism in terms of dynamical vector fields gave us the first modern field
theory. D’Alembert and Maupertuis would have been delighted to discover
that the famous equations of Maxwell’s A Treatise on Electricity and Mag-
netism (1873) follow from an action principle. There is a slight complication
stemming from gauge invariance but, as long as we are not interested in ex-
hibiting the covariance of Maxwell under Lorentz transformations, we can
sweep this under the rug by working in the azial gauge, where the scalar
electric potential does not appear.
We will start from Maxwell’s equations

divB = 0,
0B
IE = ——
cur o0
oD
IH = J+4+ —
cur + oL
divD = P, (1.101)

and show that they can be obtained from an action principle. For convenience
we shall use natural units in which ygp =9 =1, andsoc=1and D = E
and B = H.

The first equation div B = 0 contains no time derivatives. It is a con-
straint which we satisfy by introducing a vector potential A such that B =curl A.
If we set

0A
E=— 1.102
. (1102
then this automatically implies Faraday’s law of induction
0B
curlE = ——— (1.103)

ot
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We now guess that the Lagrangian is
L:/d3x B{EQ—B2}+J-A : (1.104)

The motivation is that L looks very like T — V' if we regard JE? = %A2 as
being the kinetic energy and %Bz = %(curl A)? as being the potential energy.
The term in J represents the interaction of the fields with an external current
source. In the axial gauge the electric charge density p does not appear in
the Lagrangian. The corresponding action is therefore

1., 1
S = /Ldt = // d*x [§A2 - 5(curlA)2 +J- A] dt. (1.105)
Now vary A to A 4 0A, whence
5S = / / & [—A “6A — (curl A) - (curl 5A) + J - (5A} dt.  (1.106)

Here, we have already removed the time derivative from dA by integrating
by parts in the time direction. Now we do the integration by parts in the
space directions by using the identity

div (0A X (curl A)) = (curl A) - (curl 6A) — dA - (curl (curl A))  (1.107)

and taking 0 A to vanish at spatial infinity, so the surface term, which would
come from the integral of the total divergence, is zero. We end up with

5S = / / &z {5A - [—A — cwrl (curl A) + J] } dt. (1.108)

Demanding that the variation of S be zero thus requires

0?A
i —curl (curl A) 4+ J, (1.109)
or, in terms of the physical fields,
E
curl B :J+%—t. (1.110)

This is Ampere’s law, as modified by Maxwell so as to include the displace-
ment current.
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How do we deal with the last Maxwell equation, Gauss’ law, which asserts
that div E = p? If p were equal to zero, this equation would hold if div A = 0,
i.e. if A were solenoidal. In this case we might be tempted to impose the
constraint div A = 0 on the vector potential, but doing so would undo all
our good work, as we have been assuming that we can vary A freely.

We notice, however, that the three Maxwell equations we already possess
tell us that

%(divE — p) = div (curl B) — (diVJ + %) . (1.111)
Now div (curl B) = 0, so the left-hand side is zero provided charge is con-

served, i.e. provided
p+divJ = 0. (1.112)

We assume that this is so. Thus, if Gauss’ law holds initially, it holds eter-
nally. We arrange for it to hold at ¢ = 0 by imposing initial conditions on
A. We first choose A|,—o by requiring it to satisfy

B|i—o = curl (A]i=o) . (1.113)

The solution is not unique, because may we add any V¢ to A|,—g, but this
does not affect the physical E and B fields. The initial “velocities” A|t:0
are then fixed uniquely by A|t:0 = —E|i—o, where the initial E satisfies
Gauss’ law. The subsequent evolution of A is then uniquely determined by
integrating the second-order equation (1.109).

The first integral for Maxwell is

- S fefas)
= /_d3:): [% {E? + B?) - J-A} : (1.114)

This will be conserved if J is time independent. If J = 0, it is the total field
energy.

Suppose J is neither zero nor time independent. Then, looking back at
the derivation of the time-independence of the first integral, we see that if L
does depend on time, we instead have

dE 0L

- =5 (1.115)
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In the present case we have

OL [+ .
— = /J Ad’z, (1.116)

so that

—/J-Ad?’:c - % - %(Field Energy) —/{J A+T A} &z (1.117)

Thus, cancelling the duplicated term and using E = —A, we find

d
—(F1e nergy) = — . x. .
yy Field E J-Ed 1.118

Now [ J-(—E) d*z is the rate at which the power source driving the current
is doing work against the field. The result is therefore physically sensible.

Continuum mechanics

Because the mechanics of discrete objects can be derived from an action
principle, it seems obvious that so must the mechanics of continua. This is
certainly true if we use the Lagrangian description where we follow the his-
tory of each particle composing the continuous material as it moves through
space. In fluid mechanics it is more natural to describe the motion by using
the Fulerian description in which we focus on what is going on at a partic-
ular point in space by introducing a velocity field v(r,t). Eulerian action
principles can still be found, but they seem to be logically distinct from the
Lagrangian mechanics action principle, and mostly were not discovered until
the 20th century.

We begin by showing that Euler’s equation for the irrotational motion
of an inviscid compressible fluid can be obtained by applying the action
principle to a functional

Storl = [ draa {pg—f + 50V + u(p)} S (1)

where p is the mass density and the flow velocity is determined from the
velocity potential ¢ by v = V¢. The function u(p) is the internal energy
density.
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Varying S|, p] with respect to p is straightforward, and gives a time
dependent generalization of (Daniel) Bernoulli’s equation

9 1, _
5 T3Vt he) =0, (1.120)

Here h(p) = du/dp, is the specific enthalpy.! Varying with respect to ¢
requires an integration by parts, based on

div (086 Vo) = p(V86) - (V) + 66 div (pV ), (1.121)

and gives the equation of mass conservation
9]
a—f +div (pv) = 0. (1.122)

Taking the gradient of Bernoulli’s equation, and using the fact that for po-
tential flow the vorticity w = curlv is zero and so 9;v; = 0;v;, we find that

g—: +(v-V)v=—Vh (1.123)

We now introduce the pressure P, which is related to h by
P
dP
h(P) = / —. (1.124)
o p(P)
We see that pVh = VP, and so obtain Euler’s equation

P @—: +(v- V)v) — VP (1.125)

For future reference, we observe that combining the mass-conservation equa-
tion
Op+ 0 {pv;} =0 (1.126)

with Euler’s equation
p(@tvi + Ujajvi) == —8ZP (1127)

'The enthalpy H = U + PV per unit mass. In general u and h will be functions of
both the density and the specific entropy. By taking u to depend only on p we are tacitly
assuming that specific entropy is constant. This makes the resultant flow barotropic,
meaning that the pressure is a function of the density only.
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yields

at {p’UZ} + @- {p’Uﬂ)j + (SUP} = 0, (1128)

which expresses the local conservation of momentum. The quantity
Hij = PUv; + 6ZJP (1129)

is the momentum-flur tensor, and is the j-th component of the flux of the
i-th component p; = pv; of momentum density.

The relations h = du/dp and p = dP/dh show that P and u are related
by a Legendre transformation: P = ph — u(p). From this, and the Bernoulli
equation, we see that the integrand in the action (1.119) is equal to minus
the pressure:

0
—P= pa—f + %p(v¢)2 +u(p). (1.130)

This Eulerian formulation cannot be a “follow the particle” action prin-
ciple in a clever disguise. The mass conservation law is only a consequence
of the equation of motion, and is not built in from the beginning as a con-
straint. Our variations in ¢ are therefore conjuring up new matter rather
than merely moving it around.

1.4 Variable End Points

We now relax our previous assumption that all boundary or surface terms
arising from integrations by parts may be ignored. We will find that variation
principles can be very useful for working out what boundary conditions we
should impose on our differential equations.

Consider the problem of building a railway across a parallel sided isthmus.
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y(x))
y y(%)

X

Figure 1.9: Railway across isthmus.

Suppose that the cost of construction is proportional to the length of the
track, but the cost of sea transport being negligeable, we may locate the
terminal seaports wherever we like. We therefore wish to minimize the length

Liy] = / VI (y)d, (1.131)

by allowing both the path y(x) and the endpoints y(x1) and y(z3) to vary.
Then

Lly+dy] — Lly] = /m2(5y’)y7/dx

I A BN P AR W B A N O
B /x {daf (5y 1+(y’)2> 6ydx( 1+(y’)2>}d

syl Y@) o y)
- o) L+ (y)? e y')?

T2 /
—/ P (R (1.132)
o 4T\ /14 (y)?

We have stationarity when both
i) the coefficient of dy(z) in the integral,

N
4t 1159

is zero. This requires that 3’ =const., i.e. the track should be straight.
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ii) The coefficients of dy(z1) and dy(z2) vanish. For this we need

0= y'(o)  y(x) .
VI+W)? 1+ ()?

This in turn requires that y'(x;) = y'(z2) = 0.

The integrated-out bits have determined the boundary conditions that are to
be imposed on the solution of the differential equation. In the present case
they require us to build perpendicular to the coastline, and so we go straight
across the isthmus. When boundary conditions are obtained from endpoint
variations in this way, they are called natural boundary conditions.
Example: Sliding String. A massive string of linear density p is stretched
between two smooth posts separated by distance 2L. The string is under
tension 7', and is free to slide up and down the posts. We consider only a
small deviations of the string from the horizontal.

(1.134)

y

Figure 1.10: Sliding string.

As we saw earlier, the Lagrangian for a stretched string is

L= /_LL {%pgf — %T(y’)z} dr. (1.135)

Now, Lagrange’s principle says that the equation of motion is found by re-
quiring the action

ty
S:/ Ldt (1.136)
t;
to be stationary under variations of y(x,t) that vanish at the initial and final

times, ¢; and t;. It does not demand that oy vanish at ends of the string,
x = +L. So, when we make the variation, we must not assume this. Taking
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care not to discard the results of the integration by parts in the = direction,
we find

tf L tf
55 =[] sty (i + 1 yaode — [ syczorynyar
t; J—L b

(3

+ /tf oy(—L,t)Ty' (L) dt. (1.137)

The equation of motion, which arises from the variation within the interval,
is therefore the wave equation

pij — Ty" = 0. (1.138)

The boundary conditions, which come from the variations at the endpoints,
are

y'(L,t) =9y (—L,t) =0, (1.139)

at all times t. These are the physically correct boundary conditions, because
any up-or-down component of the tension would provide a finite force on an
infinitesimal mass. The string must therefore be horizontal at its endpoints.
Example: Bead and String. Suppose now that a bead of mass M is free to
slide up and down the y axis,

y

y(0)}

0 L

Figure 1.11: A bead connected to a string.

and is is attached to the x = 0 end of our string. The Lagrangian for the
string-bead contraption is

ol NI P
{—py — =Ty } dzx. (1.140)

L= 5MaF + [ {50 -

0
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Here, as before, p is the mass per unit length of the string and 7" is its tension.
The end of the string at z = L is fixed. By varying the action S = [ Ldt,
and taking care not to throw away the boundary part at x = 0 we find that

tf tf L
08 = / [Ty — Mij],_,0y(0,t) dt + / / {Ty" — pyj} 6y (z,t) dzdt.
t; t; 0

(1.141)
The Euler-Lagrange equations are therefore

pi(z) —Ty"(z) = 0, 0<x<L,
Mi(0) = Ty'(0) = 0, y(L)=0. (1.142)

The boundary condition at x = 0 is the equation of motion for the bead. It
is clearly correct, because T%'(0) is the vertical component of the force that
the string tension exerts on the bead.

These examples led to boundary conditions that we could easily have
figured out for ourselves without the variational principle. The next exam-
ple shows that a variational formulation can be exploited to obtain a set of
boundary conditions that might be difficult to write down by purely “physi-
cal” reasoning.

Figure 1.12: Gravity waves on water.

Harder example: Gravity waves on the surface of water. An action suitable
for describing water waves is given by? S[¢, h| = [ L dt, where

B h(x,t) 8(25 1 )

2J. C. Luke, J. Fluid Dynamics, 27 (1967) 395.
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Here ¢ is the velocity potential and pg is the density of the water. The density
will not be varied because the water is being treated as incompressible. As
before, the flow velocity is given by v = V¢. By varying ¢(z,y,t) and the
depth h(z,t), and taking care not to throw away any integrated-out parts of
the variation at the physical boundaries, we obtain:

V2p = 0, within the fluid.

2? (qu) +gy = 0, on the free surface.
g—j = 0, on y=0.
oh 0¢ 0Ohdp
o Dy + e 0, on the free surface. (1.144)

The first equation comes from varying ¢ within the fluid, and it simply
confirms that the flow is incompressible, i.e. obeys divv = 0. The second
comes from varying h, and is the Bernoulli equation stating that we have
P = P, (atmospheric pressure) everywhere on the free surface. The third,
from the variation of ¢ at y = 0, states that no fluid escapes through the
lower boundary.

Obtaining and interpreting the last equation, involving 0h/dt, is some-
what trickier. It comes from the variation of ¢ on the upper boundary. The
variation of S due to d¢ is

9 9
5S = /pg {atw o ( ¢8x) (5¢ ) —5¢v2¢} dtdzdy.
(1.145)

The first three terms in the integrand constitute the three-dimensional di-
vergence div (d¢ @), where, listing components in the order ¢, z, ¥,

96 aﬂ

o By (1.146)

2 |:

The integrated-out part on the upper surface is therefore [(® - n)d¢d|S|.
Here, the outward normal is

—1/2
oh oh\? oh  Oh
(1 + <8t> + (%) ) [—E,—%,l] : (1.147)



1.4. VARIABLE END POINTS 35

and the element of area

on\2  ron\?\'"”
d|S| = <1+ (E) + <%) ) dtdz. (1.148)

The boundary variation is thus

B oh 96  Ohdb

Requiring this variation to be zero for arbitrary d¢ (1’, h(z,t), t) leads to

oh _ 96  0hds _

5t "3y " orar (1.150)

This last boundary condition expresses the geometrical constraint that the
surface moves with the fluid it bounds, or, in other words, that a fluid particle
initially on the surface stays on the surface. To see that this is so, define
f(x,y,t) = h(z,t) —y. The free surface is then determined by f(z,y,t) =
0. Because the surface particles are carried with the flow, the convective
derivative of f,

af _ of

I ot + (v-V)f, (1.151)

must vanish on the free surface. Using v = V¢ and the definition of f, this
reduces to

oh  9ph dp
E+%£_a_y_0’ (1.152)

which is indeed the last boundary condition.
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1.5 Lagrange Multipliers

Figure 1.13: Road on hill.

Figure 1.13 shows the contour map of a hill of height h = f(z,y). The
hill traversed by a road whose points satisfy the equation g(z,y) = 0. Our
challenge is to use the data f(x,y) and g(z,y) to find the highest point on
the road.

When r changes by dr = (dx, dy), the height f changes by

df = Vf - dr, (1.153)

where Vf = (0,f,0,f). The highest point, being a stationary point, will
have df = 0 for all displacements dr that stay on the road — that is for
all dr such that dg = 0. Thus V[ - dr must be zero for those dr such that
0 = Vg - dr. In other words, at the highest point V f will be orthogonal to
all vectors that are orthogonal to Vg. This is possible only if the vectors V f
and Vg are parallel, and so Vf = AVg for some \.

To find the stationary point, therefore, we solve the equations

Vf—-—AVg = 0,
g(z,y) = 0, (1.154)

simultaneously.
Example: Let f = 2> +y?> and g = x +y — 1. Then Vf = 2(x,y) and
Vg=(1,1). So

2ay) ALY = 0. = (5y)= 50
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11
r+y =1, = A=1, = (1,y)= (575)
When there are n constraints, g1 = go = -+ = g, = 0, we want V[ to lie
in
(< Vg >H)t =< Vg >, (1.155)
where < e; > denotes the space spanned by the vectors e; and < e; > is
the its orthogonal complement. Thus V f lies in the space spanned by the
vectors Vg;, so there must exist n numbers \; such that

Vi=> \Vg. (1.156)
i=1

The numbers \; are called Lagrange multipliers. We can therefore regard our
problem as one of finding the stationary points of an auxilliary function

F=f- Z)\igia (1.157)
with the n undetermined multipliers A\;,7 = 1, ..., n, subsequently being fixed
by imposing the n requirements that ¢; =0,7=1,...,n.

Example: Find the stationary points of
F(X) = -x-Ax= —.CL’Z'AZ']‘LU]' (1158)

on the surface x - x = 1. Here A;; is a symmetric matrix.
Solution: We look for stationary points of

G(x) = F(x) — %A\XP. (1.159)

The derivatives we need are

oF 1 1
% = 55]“14,]1’] + §$,A,]5]k
and 5 /i
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Thus, the stationary points must satisfy

Apjz; = Ay,
vyt = 1, (1.162)

and so are the normalized eigenvectors of the matrix A. The Lagrange
multiplier at each stationary point is the corresponding eigenvalue.
Example: Statistical Mechanics. Let I' denote the classical phase space of
a mechanical system of n particles governed by Hamiltonian H(p,q). Let
dT be the Liouville measure d*"pd®*q. In statistical mechanics we work
with a probability density p(p,q) such that p(p,q)dT" is the probability of
the system being in a state in the small region dI'. The entropy associated
with the probability distribution is the functional

Slp] = —/Fplnpdl". (1.163)

We wish to find the p(p, ¢) that maximizes the entropy for a given energy

(E) = /FpHdF. (1.164)

We cannot vary p freely as we should preserve both the energy and the
normalization condition

/pdr =1 (1.165)
I

that is required of any probability distribution. We therefore introduce two
Lagrange multipliers, 1 + o and f3, to enforce the normalization and energy
conditions, and look for stationary points of

Flj) :/{—plnp+(0z+1)p—ﬁpH} dr. (1.166)
r
Now we can vary p freely, and hence find that
5F:/{—lnp+a—ﬁH}5de. (1.167)
r

Requiring this to be zero gives us

p(p, q) = > PH®D, (1.168)
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where «, 8 are determined by imposing the normalization and energy con-
straints. This probability density is known as the canonical distribution, and
the parameter (3 is the inverse temperature 5 = 1/T.

Example: The Catenary. At last we have the tools to solve the problem of
the hanging chain of fixed length. We wish to minimize the potential energy

Ely] = /_Ly\/l + (v')%dxz, (1.169)

subject to the constraint

ly] = /_L V14 (y)%dx = const., (1.170)

where the constant is the length of the chain. We introduce a Lagrange
multiplier A and find the stationary points of

Fly| = /_L(y — MV1+ (¥)%dz, (1.171)

so, following our earlier methods, we find

y = A+ Kk cosh (x+a). (1.172)
K

We choose k, A, a to fix the two endpoints (two conditions) and the length
(one condition).

Example: Sturm-Liouville Problem. We wish to find the stationary points
of the quadratic functional

T = [ 5 (W) + awn?) de (1173

subject to the boundary conditions y(x) = 0 at the endpoints x1, z5 and the
normalization

K[y]:/ y?dr = 1. (1.174)

Taking the variation of J — (A/2)K, we find

0J = / {=(py')" + qy — My} oy d. (1.175)
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Stationarity therefore requires

—(py) +aqy =Ny, y(x1) =y(x2) = 0. (1.176)

This is the Sturm-Liouville eigenvalue problem. It is an infinite dimensional
analogue of the F/(x) = 2x - Ax problem.
Example: Irrotational Flow Again. Consider the action functional

S[V,gb,p]:/{;pv —u(p )+¢( +d1vpv)}dtd3x (1.177)

This is similar to our previous action for the irrotational barotropic flow of an
inviscid fluid, but here v is an independent variable and we have introduced
infinitely many Lagrange multipliers ¢(x, t), one for each point of space-time,
so as to enforce the equation of mass conservation p+div pv = 0 everywhere,
and at all times. Equating §.5/v to zero gives v = V¢, and so these Lagrange
multipliers become the velocity potential as a consequence of the equations
of motion. The Bernoulli and Euler equations now follow almost as before.
Because the equation v. = V¢ does not involve time derivatives, this is
one of the cases where it is legitimate to substitute a consequence of the
action principle back into the action. If we do this, we recover our previous
formulation.

1.6 Maximum or Minimum?

We have provided many examples of stationary points in function space. We
have said almost nothing about whether these stationary points are maxima
or minima. There is a reason for this: investigating the character of the
stationary point requires the computation of the second functional derivative.

5%J
oy (x1)6y(2)

and the use of the functional version of Taylor’s theorem to expand about
the stationary point y(x):

Jly+en) = J[y1+e/ @ 5 ‘”

dx

()],

= / (2 52—J drdis +
xl 2 5y(:€1)5y(x2) e

(1.178)
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Since y(x) is a stationary point, the term with 6.J/dy(z)|, vanishes. Whether
y(x) is a maximum, a minimum, or a saddle therefore depends on the number
of positive and negative eigenvalues of 62.J/6(y(x1))d(y(z2)), a matrix with
a continuous infinity of rows and columns—these being labeled by x; and
x9 repectively. It is not easy to diagonalize a continuously infinite matrix!
Consider, for example, the functional

Tl = [ 5 @) + ) do. (1179)

with y(a) = y(b) = 0. Here, as we already know,

0J . d d
@ U @ (p(z)@y(f)) +q(x)y(x), (1.180)

and, except in special cases, this will be zero only if y(z) = 0. We might
reasonably expect the second derivative to be

i(Ly) = (1.181)
0y

where L is the Sturm-Liouville differential operator

L= —% (p(:v)%) +q(x). (1.182)

How can a differential operator be a matrix like §2.J/8(y(x1))d(y(x2))?
We can formally compute the second derivative by exploiting the Dirac
delta “function” §(z) which has the property that

y(za) = /5(932 —x1)y(xy) dzy. (1.183)

Thus
0y(xq) = /5(932 — x1)0y(x1) dxq, (1.184)

from which we read off that

= 5(as — 21). (1.185)
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Using (1.185), we find that

) 0J d d
(5 ) = = (plaa) (e = 1)) a(aa)itoa—an). (1156)
How are we to make sense of this expression? We begin in the next chapter
where we explain what it means to differentiate 6(x), and show that (1.186)
does indeed correspond to the differential operator L. In subsequent chap-
ters we explore the manner in which differential operators and matrices are
related. We will learn that just as some matrices can be diagonalized so can
some differential operators, and that the class of diagonalizable operators
includes (1.182).

If all the eigenvalues of L are positive, our stationary point was a min-
imum. For each negative eigenvalue, there is direction in function space in
which J[y] decreases as we move away from the stationary point.

1.7 Further Exercises and Problems

Here is a collection of problems relating to the calculus of variations. Some
date back to the 16th century, others are quite recent in origin.

Exercise 1.1: A smooth path in the z-y plane is given by r(t) = (z(t), y(t))
with r(0) = a, and r(1) = b. The length of the path from a to b is therefore.

1
Sr] :/ V2 4 g2 dt,
0

where & = dz/dt, y = dy/dt. Write down the Euler-Lagrange conditions for
S[r] to be stationary under small variations of the path that keep the endpoints
fixed, and hence show that the shortest path between two points is a straight
line.

Exercise 1.2: Fermat’s principle. A medium is characterised optically by
its refractive index n, such that the speed of light in the medium is ¢/n.
According to Fermat (1657), the path taken by a ray of light between any
two points makes stationary the travel time between those points. Assume
that the ray propagates in the x,y plane in a layered medium with refractive
index n(x). Use Fermat’s principle to establish Snell’s law in its general form
n(x)sin1 = constant by finding the equation giving the stationary paths y(x)

for
Py = /n(:p)\/l + yda.
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(Here the prime denotes differentiation with respect to x.) Repeat this exercise
for the case that n depends only on y and find a similar equation for the

stationary paths of
Poly] = /n(y)\/ 1+ y%dz.

By using suitable definitions of the angle of incidence 1 in each case, show
that the two formulations of the problem give physically equivalent answers.
In the second formulation you will find it easiest to use the first integral of
Euler’s equation.

Problem 1.3: Hyperbolic Geometry. This problem introduces a version of the
Poincaré model for the non-Euclidean geometry of Lobachevski.

a) Show that the stationary paths for the functional

1
&mz/;h+Ww,

with y(z) restricted to lying in the upper half plane are semi-circles of
arbitrary radius and with centres on the x axis. These paths are the
geodesics, or minimum length paths, in a space with Riemann metric

1
ds® = ?(dznz + dy?), y > 0.

b) Show that if we call these geodesics “lines”, then one and only one line
can be drawn though two given points.

¢) Two lines are said to be parallel if, and only if, they meet at “infinity”,
i.e. on the x axis. (Verify that the x axis is indeed infinitely far from any
point with y > 0.) Show that given a line ¢ and a point A not lying on
that line, that there are two lines passing through A that are parallel to
q, and that between these two lines lies a pencil of lines passing through
A that never meet q.

Problem 1.4: Elastic Rods. The elastic energy per unit length of a bent steel
rod is given by %YI /R2. Here R is the radius of curvature due to the bending,
Y is the Young’s modulus of the steel and I = [f y?dxdy is the moment
of inertia of the rod’s cross section about an axis through its centroid and
perpendicular to the plane in which the rod is bent. If the rod is only slightly
bent into the yz plane and lies close to the z axis, show that this elastic energy
can be approximated as
L1

mmzllgymffd%
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where the prime denotes differentiation with respect to z and L is the length
of the rod. We will use this approximate energy functional to discuss two
practical problems.

a)

a)

Figure 1.14: A rod used as: a) a column, b) a cantilever.

Euler’s problem: the buckling of a slender column. The rod is used as
a column which supports a compressive load Mg directed along the z
axis (which is vertical). Show that when the rod buckles slighly (i.e.
deforms with both ends remaining on the z axis) the total energy, in-
cluding the gravitational potential energy of the loading mass M, can be
approximated by

Ulyl = /OL {g (") - % (y’)z} dz.

By considering small deformations of the form
s Nz
y(z) = ;::1 S0 ——

show that the column is unstable to buckling and collapse if Mg >
T2YT/L2.
Leonardo da Vinci’s problem: the light cantilever. Here we take the z
axis as horizontal and the y axis as being vertical. The rod is used as
a beam or cantilever and is fixed into a wall so that y(0) = 0 = ¥/(0).
A weight Mg is hung from the end z = L and the beam sags in the —y
direction. We wish to find y(z) for 0 < z < L. We will ignore the weight
of the beam itself.

e Write down the complete expression for the energy, including the

gravitational potential energy of the weight.
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e Find the differential equation and boundary conditions at z =0, L
that arise from minimizing the total energy. In doing this take care
not to throw away any term arising from the integration by parts.
You may find the following identity to be of use:

%(flg/l _ fgl/l) — f//g/l _ fg””.

e Solve the equation. You should find that the displacement of the
end of the beam is y(L) = —3MgL3/YI.

Exercise 1.5: Suppose that an elastic body € of density p is slightly deformed
so that the point that was at cartesian co-ordinate z; is moved to z; + 7;(x).
We define the resulting strain tensor e;j by

1 /0n; On
€ij = = il + L .
2 8:17@ al‘j
It is automatically symmetric in its indices. The Lagrangian for small-amplitude
elastic motion of the body is

1. 1
L[n] :/ {5/7?73 — §€ijCijkl€kl} dr.
Q

Here, c;j1; is the tensor of elastic constants, which has the symmetries

Cijkl = Cklij = Cjikl = Cijlk-

By varying the 7;, show that the equation of motion for the body is

9%n; 0
P 7 -0ji =0,

o2 Oz
where
Oi5 = Cijkl€Ekl

is the stress tensor. Show that variations of 7; on the boundary 9 give as
boundary conditions

OijNj = 0,

where n; are the components of the outward normal on 0f.
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Figure 1.15: Weighted line.

Problem 1.6:The catenary revisited. We can describe a catenary curve in
parametric form as z(s), y(s), where s is the arc-length. The potential en-
ergy is then simply fOL pgy(s)ds where p is the mass per unit length of the
hanging chain. The z, y are not independent functions of s, however, because
#2 4+ 9% =1 at every point on the curve. Here a dot denotes a derivative with
respect to s.

a) Introduce infinitely many Lagrange multipliers A(s) to enforce the 22 + 72
constraint, one for each point s on the curve. From the resulting func-
tional derive two coupled equations describing the catenary, one for z(s)
and one for y(s). By thinking about the forces acting on a small section
of the cable, and perhaps by introducing the angle 1) where & = cos ¢ and
1y = sin1), so that s and vy are intrinsic coordinates for the curve, inter-
pret these equations and show that A(s) is proportional to the position-
dependent tension 7'(s) in the chain.

b) You are provided with a light-weight line of length 7a/2 and some lead
shot of total mass M. By using equations from the previous part (suit-
ably modified to take into account the position dependent p(s)) or oth-
erwise, determine how the lead should be distributed along the line if the
loaded line is to hang in an arc of a circle of radius a (see figure 1.15)
when its ends are attached to two points at the same height.

Problem 1.7: Another model for Lobachevski geometry (see exercise 1.3)
is the Poincaré disc. This space consists of the interior of the unit disc
D? = {(z,y) € R? : 22 + y? < 1} equipped with Riemann metric

dz? + dy?

ds* = ———2 .
ST a2y
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The geodesic paths are found by minimizing the arc-length functional

s[r]z/ds:/{%yz\/W}dt,

1— 22

where r(t) = (z(t),y(t)) and a dot indicates a derivative with respect to the
parameter ¢.

s \\P
/'/
D? AT
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\\\\ / //
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Figure 1.16: The Poincaré disc of exercise 1.7. The radius OP of the Poincare
disc is unity, while the radius of the geodesic arc PQR is PX = QX = RX =
R. The distance between the centres of the disc and arc is OX = xy. Your
task in part c) is to show that ZOPX = ZORX = 90°.

a) Either by manipulating the two Euler-Lagrange equations that give the
conditions for s[r| to be stationary under variations in r(t), or, more effi-
ciently, by observing that s[r| is invariant under the infinitesimal rotation

br = ey
oy = —ex

and applying Noether’s theorem, show that the parameterised geodesics

obey
d 1 Ty —yi \ 0
dt \ 1 — a2 — 2 P2+ g2 -
b) Given a point (a,b) within D?, and a direction through it, show that
the equation you derived in part a) determines a unique geodesic curve
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passing through (a, b) in the given direction, but does not determine the
parametrization of the curve.
c) Show that there exists a solution to the equation in part a) in the form
x(t) = Rcost+ xg
y(t) = Rsint.
Find a relation between xy and R, and from it deduce that the geodesics

are circular arcs that cut the bounding unit circle (which plays the role
of the line at infinity in the Lobachevski plane) at right angles.

Exercise 1.8: The Lagrangian for a particle of charge ¢ is
Lix, %] = %ka —4é(x) + qx - A(x).
Show that Lagrange’s equation leads to
mx = ¢(E 4+ x x B),

where 5A
E=-V¢— o0 B = curl A.

Exercise 1.9: Consider the action functional
1 1 1 )
Slw,p,r] = / (511w% + §Izw§ + §I3w§ +p-(F+wx r)} dt,

where r and p are time-dependent three-vectors, as is w = (w1, ws,ws), Apply
the action principle to obtain the equations of motion for r,p,w and show
that they lead to Euler’s equations

Ildjl — (Ig — Ig)WQW:; = 0,
IQ(,ZJQ — (13 — Il)W3wl = 0,
I3wz — (I — L)wiws =

governing the angular velocity of a freely-rotating rigid body.

Problem 1.10: Piano String. A elastic piano string can vibrate both trans-
versely and longitudinally, and the two vibrations influence one another. A
Lagrangian that takes into account the lowest-order effect of stretching on the
local string tension, and can therefore model this coupled motion, is

2 2 072
i oo (8 )3 5540
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y

Figure 1.17: Vibrating piano string.

Here £(z,t) is the longitudinal displacement and 7n(x,t) the transverse dis-
placement of the string. Thus, the point that in the undisturbed string had
co-ordinates [z, 0] is moved to the point with co-ordinates [x + &(x,t), n(z,t)].
The parameter 79 represents the tension in the undisturbed string, A is the
product of Young’s modulus and the cross-sectional area of the string, and pg
is the mass per unit length.

a) Use the action principle to derive the two coupled equations of motion,
one involving i and one involving @

ot? ot?

b) Show that when we linearize these two equations of motion, the longi-
tudinal and transverse motions decouple. Find expressions for the lon-
gitudinal (cr) and transverse (cy) wave velocities in terms of 79, pp and
A

c) Assume that a given transverse pulse n(x,t) = no(x — crt) propagates
along the string. Show that this induces a concurrent longitudinal pulse
of the form {(z — c¢rt). Show further that the longitudinal Newtonian
momentum density in this concurrent pulse is given by

o€ 1 & 0

Pooy = 572 2
ot 2¢] —ch

where o 8
T = —,00—77—77
Oz Ot
is the associated pseudo-momentum density.

The forces that created the transverse pulse will also have created other lon-
gitudinal waves that travel at c;,. Consequently the Newtonian z-momentum
moving at c¢r is not the only z-momentum on the string, and the total “true”
longitudinal momentum density is not simply proportional to the pseudo-
momentum density.
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Exercise 1.11: Obtain the canonical energy-momentum tensor 1, for the
barotropic fluid described by (1.119). Show that its conservation leads to both
the momentum conservation equation (1.128), and to the energy conservation
equation

€ + 0i{vi(E + P)},

where the energy density is

£ = £o(V)? +ulp).

Interpret the energy flux as being the sum of the convective transport of energy
together with the rate of working by an element of fluid on its neighbours.

Problem 1.12: Consider the action functional®

1

S[v,p, ¢, 8,7] = /d4w {—§pV2 -9 (% + div (PV)> +pp <% + (v V)v) +U(p)} ,

which is a generalization of (1.177) to include two new scalar fields § and ~.
Show that varying v leads to

v =Vo¢+ BVr.

This is the Clebsch representation of the velocity field. It allows for flows with
non-zero vorticity
w=curlv=Vgx Vy.

Show that the equations that arise from varying the remaining fields p, ¢, 3,
v, together imply the mass conservation equation

dp . _
5 +div (pv) =0,

and Bernoulli’s equation in the form

ot

(Recall that h = du/dp.) Show that this form of Bernoulli’s equation is
equivalent to Euler’s equation

ov
(Ve V)v=—Vh.

Consequently S provides an action principle for a general inviscid barotropic
flow.

3H. Bateman, Proc. Roy. Soc. Lond. A 125 (1929) 598-618; C. C. Lin, Liquid Helium
in Proc. Int. Sch. Phys. “Enrico Fermi”, Course XXI (Academic Press 1965).

a—V—i—ca><v:—V<%v2+h>.
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Exercise 1.13: Drums and Membranes. The shape of a distorted drumskin is
described by the function h(z,y), which gives the height to which the point
(z,y) of the flat undistorted drumskin is displaced.

a) Show that the area of the distorted drumskin is equal to

Arealh] = /dm dy\/l + <%>2 + <g—z>2,

where the integral is taken over the area of the flat drumskin.
b) Show that for small distortions, the area reduces to

1
A[h] = const. + 3 /da: dy |[Vh|%.

c) Show that if h satisfies the two-dimensional Laplace equation then A is
stationary with respect to variations that vanish at the boundary.

d) Suppose the drumskin has mass py per unit area, and surface tension 7.
Write down the Lagrangian controlling the motion of the drumskin, and
derive the equation of motion that follows from it.

Problem 1.14: The Wulff construction. The surface-area functional of the
previous exercise can be generalized so as to find the equilibrium shape of a
crystal. We describe the crystal surface by giving its height z(z,y) above the
x-y plane, and introduce the direction-dependent surface tension (the surface
free-energy per unit area) a(p,q), where

p_ax7 q_ay’

We seek to minimize the total surface free energy

Flz] = /dwdy {a(p, OV1+p*+ q2} ;
subject to the constraint that the volume of the crystal
Vl]z] = /zdmdy

remains constant.

a) Enforce the volume constraint by introducing a Lagrange multiplier 2\~
and so obtain the Euler-Lagrange equation

& (0f\ 0 (9f\ . 1
%(a?)*a@(a?)‘” |

f(p,q) = alp.9) V1 +p? +¢>

Here
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b) Show in the isotropic case, where « is constant, that
z(z,y) = \/(a)\)Q —(z —a)? — (y — b)? + const.

is a solution of the Euler-Lagrange equation. In this case, therefore, the
equilibrium shape is a sphere.

An obvious way to satisfy the Euler-Lagrange equation in the general anisotropic
case would be to arrange things so that

_\9f _\of
x—)\a—p, y= a—q (%)

c) Show that (xx) is exactly the relationship we would have if z(z,y) and
Af(p,q) were Legendre transforms of each other—i.e. if

M (p,q) = px + qy — z(x,y),

where the z and y on the right-hand side are functions of p ¢ obtained
by solving (x). Do this by showing that the inverse relation is

2(x,y) = pr +qy — Af(p,q)

where now the p, ¢ on the right-hand side become functions of x and y,
and are obtained by solving ().

For real crystals, a(p,q) can have the property of a being a continuous-but-
nowhere-differentiable function, and so the differential calculus used in deriv-
ing the Euler-Lagrange equation is inapplicable. The Legendre transformation,
however, has a geometric interpretation that is more robust than its calculus-
based derivation.

Recall that if we have a two-parameter family of surfaces in R?® given by
F(x,y,z;p,q) = 0, then the equation of the envelope of the surfaces is found

by solving the equations
0o—p_oF_oF
dp  Oq

so as to eliminate the parameters p, q.

d) Show that the equation
F(z,y,2:p,q9) =pr+qy — 2z — Aa(p,g)V1+p* +¢* =0
describes a family of planes perpendicular to the unit vectors

(p7q7 _1)
V14+p? +¢?

and at a distance \a(p, q) away from the origin.

n—
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e) Show that the equations to be solved for the envelope of this family of
planes are exactly those that determine z(z,y). Deduce that, for smooth
a(p, q), the profile z(x,y) is this envelope.

N

Figure 1.18: Two-dimensional Wulff crystal. a) Polar plot of surface tension
« as a function of the normal n to a crystal face, together with a line per-
pendicular to n at distance « from the origin. b) Wulff’s construction of the
corresponding crystal surface as the envelope of the family of perpendicular
lines. In this case, the minimum-energy crystal has curved faces, but sharp
corners. The envelope continues beyond the corners, but these parts are
unphysical.

Wulff conjectured® that, even for non-smooth a(p,q), the minimum-energy
shape is given by an equivalent geometric construction: erect the planes from
part d) and, for each plane, discard the half-space of R3 that lies on the far side
of the plane from the origin. The convex region consisting of the intersection
of the retained half-spaces is the crystal. When «(p, q) is smooth this “Wulff
body” is bounded by part of the envelope of the planes. (The parts of the
envelope not bounding the convex body—the “swallowtails” visible in figure
1.18—are unphysical.) When «a(p.q) has cusps, these singularities can give
rise to flat facets which are often joined by rounded edges. A proof of Wulft’s
claim had to wait until 43 years until 1944, when it was established by use of
the Brunn-Minkowski inequality.®

1G. Wulff, “Zur frage der geschwindigkeit des wachsturms under auflosung der
kristallflachen,” Zeitschrift fir Kristallografie, 34 (1901) 449-530.

®A. Dinghas, “Uber einen geometrischen Satz von Wulff fiir die Gleichgewichtsform
von Kristallen, Zeitshrift fir Kristallografie, 105 (1944) 304-314. For a readable modern
account see: R. Gardner, “The Brunn-Minkowski inequality,” Bulletin Amer. Math. Soc.
39 (2002) 355-405.
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Chapter 2

Function Spaces

Many differential equations of physics are relations involving linear differ-
ential operators. These operators, like matrices, are linear maps acting on
vector spaces. The new feature is that the elements of the vector spaces are
functions, and the spaces are infinite dimensional. We can try to survive
in these vast regions by relying on our experience in finite dimensions, but
sometimes this fails, and more sophistication is required.

2.1 Motivation

In the previous chapter we considered two variational problems:
1) Find the stationary points of

1 1
F(x) = 7% Ax = §:L',-Aijxj (2.1)
on the surface x - x = 1. This led to the matrix eigenvalue equation
Ax = \x. (2.2)

2) Find the stationary points of

Tl = [ 5 1@ ) + atwn?} e (2.3

subject to the conditions y(a) = y(b) = 0 and
b
Kly] = / y?dr = 1. (2.4)

55
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This led to the differential equation

—(py") +aqy =Xy, yla)=y() =0. (2.5)

There will be a solution that satisfies the boundary conditions only for
a discrete set of values of A.

The stationary points of both function and functional are therefore deter-
mined by linear eigenvalue problems. The only difference is that the finite
matrix in the first is replaced in the second by a linear differential operator.
The theme of the next few chapters is an exploration of the similarities and
differences between finite matrices and linear differential operators. In this
chapter we will focus on how the functions on which the derivatives act can
be thought of as vectors.

2.1.1 Functions as vectors

Consider Fla, b], the set of all real (or complex) valued functions f(x) on the
interval [a,b]. This is a vector space over the field of the real (or complex)
numbers: Given two functions fi(z) and fs(x), and two numbers \; and Ao,
we can form the sum Ay fi(z)+ A2 fo(x) and the result is still a function on the
same interval. Examination of the axioms listed in appendix A will show that
Fla,b] possesses all the other attributes of a vector space as well. We may
think of the array of numbers (f(z)) for z € [a,b] as being the components
of the vector. Since there is an infinity of independent components — one
for each point x — the space of functions is infinite dimensional.

The set of all functions is usually too large for us. We will restrict our-
selves to subspaces of functions with nice properties, such as being continuous
or differentiable. There is some fairly standard notation for these spaces: The
space of C™ functions (those which have n continuous derivatives) is called
C™la,b]. For smooth functions (those with derivatives of all orders) we write
C[a, b]. For the space of analytic functions (those whose Taylor expansion
actually converges to the function) we write C*¥[a, b]. For C*° functions de-
fined on the whole real line we write C>°(R). For the subset of functions
with compact support (those that vanish outside some finite interval) we
write Cg°(R). There are no non-zero analytic functions with compact sup-
port: C¥(R) = {0}.



2.2. NORMS AND INNER PRODUCTS 57

2.2 Norms and Inner Products

We are often interested in “how large” a function is. This leads to the idea of
normed function spaces. There are many measures of function size. Suppose
R(t) is the number of inches per hour of rainfall. If your are a farmer you
are probably most concerned with the total amount of rain that falls. A big
rain has big [ |R(¢)| dt. If you are the Urbana city engineer worrying about
the capacity of the sewer system to cope with a downpour, you are primarily
concerned with the maximum value of R(t). For you a big rain has a big
“sup |R(t)|."!

2.2.1 Norms and convergence

We can seldom write down an exact solution function to a real-world problem.
We are usually forced to use numerical methods, or to expand as a power
series in some small parameter. The result is a sequence of approximate
solutions f,(z), which we hope will converge to the desired exact solution
f(x) as we make the numerical grid smaller, or take more terms in the power
series.

Because there is more than one way to measure of the “size” of a function,
the convergence of a sequence of functions f,, to a limit function f is not as
simple a concept as the convergence of a sequence of numbers x,, to a limit z.
Convergence means that the distance between the f,, and the limit function
f gets smaller and smaller as n increases, so each different measure of this
distance provides a new notion of what it means to converge. We are not go-
ing to make much use of formal “e, §” analysis, but you must realize that this
distinction between different forms of convergence is not merely academic:
real-world engineers must be precise about the kind of errors they are pre-
pared to tolerate, or else a bridge they design might collapse. Graduate-level
engineering courses in mathematical methods therefore devote much time to
these issues. While physicists do not normally face the same legal liabilities
as engineers, we should at least have it clear in our own minds what we mean
when we write that f, — f.

'Here “sup,” short for supremum, is synonymous with the “least upper bound” of a
set of numbers, i.e. the smallest number that is exceeded by no number in the set. This
concept is more useful than “maximum” because the supremum need not be an element
of the set. It is an axiom of the real number system that any bounded set of real numbers
has a least upper bound. The “greatest lower bound” is denoted “inf”, for infimum.
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Here are some common forms of convergence:
i) If, for each z in its domain of definition D, the set of numbers f,(z)
converges to f(z), then we say the sequence converges pointwise.
ii) If the maximum separation

sup | fu(z) — f ()| (2.6)
zeD
goes to zero as n — 0o, then we say that f,, converges to f uniformly
on D.
iii) If
[ 18@) = s}l o (27)
D

goes to zero as n — oo, then we say that f,, converges in the mean to
fonD.
Uniform convergence implies pointwise convergence, but not wvice versa. If
D is a finite interval, then uniform convergence implies convergence in the
mean, but convergence in the mean implies neither uniform nor pointwise
convergence.
Example: Consider the sequence f, = 2" (n =1, 2, ...) and D = [0, 1).
Here, the round and square bracket notation means that the point x = 0 is
included in the interval, but the point 1 is excluded.

1

> X
1

Figure 2.1: 2™ — 0 on [0, 1), but not uniformly.

As n becomes large we have 2™ — 0 pointwise in D, but the convergence is

not uniform because

sup [z" — 0] =1 (2.8)
€D

for all n.
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Example: Let f, = 2" with D = [0,1]. Now the the two square brackets
mean that both x = 0 and x = 1 are to be included in the interval. In this
case we have neither uniform nor pointwise convergence of the z" to zero,
but 2" — 0 in the mean.

We can describe uniform convergence by means of a norm — a general-
ization of the usual measure of the length of a vector. A norm, denoted by
| f||, of a vector f (a function, in our case) is a real number that obeys

i) positivity: ||f|| >0, and ||f|| =0« f =0,

ii) the triangle inequality: ||f + gl < | fIl + llgll,
iii) linear homogeneity: |[Af|| = |All|f]-
One example is the “sup” norm, which is defined by

[ flloc = sup [ f(z)]. (2.9)
€D

This number is guaranteed to be finite if f is continuous and D is compact.
In terms of the sup norm, uniform convergence is the statement that

T [|fy — flloe = 0. (2.10)

2.2.2 Norms from integrals

The space LP[a,b], for any 1 < p < oo, is defined to be our F'[a,b] equipped

with . Vo
I, = ([ rpas) (211)

as the measure of length, and with a restriction to functions for which || f||,
is finite.

We say that f,, — f in LP if the L? distance ||f — f,||, tends to zero. We
have already seen the L' measure of distance in the definition of convergence
in the mean. As in that case, convergence in LP says nothing about pointwise
convergence.

We would like to regard ||f||, as a norm. It is possible, however, for a
function to have |f||, = 0 without f being identically zero — a function
that vanishes at all but a finite set of points, for example. This pathology
violates number i) in our list of requirements for something to be called a
norm, but we circumvent the problem by simply declaring such functions to
be zero. This means that elements of the LP spaces are not really functions,
but only equivalence classes of functions — two functions being regarded as
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the same is they differ by a function of zero length. Clearly these spaces are
not for use when anything significant depends on the value of the function
at any precise point. They are useful in physics, however, because we can
never measure a quantity at an exact position in space or time. We usually
measure some sort of local average.

The L” norms satisfy the triangle inequality for all 1 < p < oo, although
this is not exactly trivial to prove.

An important property for any space to have is that of being complete.
Roughly speaking, a space is complete if when some sequence of elements of
the space look as if they are converging, then they are indeed converging and
their limit is an element of the space. To make this concept precise, we need
to say what we mean by the phrase “look as if they are converging.” This
we do by introducing the idea of a Cauchy sequence.

Definition: A sequence f, in a normed vector space is Cauchy if for any € > 0
we can find an N such that n,m > N implies that || f,, — f.| < €.

This definition can be loosely paraphrased to say that the elements of a
Cauchy sequence get arbitrarily close to each other as n — oc.

A normed vector space is complete with respect to its norm if every
Cauchy sequence actually converges to some element in the space. Consider.
for example, the normed vector space QQ of rational numbers with distance

measured in the usual way as ||¢1 — ¢2|| = |¢1 — ¢2|. The sequence
Qo — ]_O,
g1 = 14,
G = 141,
q3 = 1414,

consisting of successive decimal approximations to v/2, obeys

R [ (2.12)
and so is Cauchy. Pythagoras famously showed that v/2 is irrational, however,
and so this sequence of rational numbers has no limit in Q. Thus Q is not
complete. The space R of real numbers is constructed by filling in the gaps
between the rationals, and so completing Q. A real number such as /2
is defined as a Cauchy sequence of rational numbers (by giving a rule, for
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example, that determines its infinite decimal expansion), with two rational
sequences ¢, and ¢, defining the same real number if ¢, — ¢/, converges to
Zero.

A complete normed vector space is called a Banach space. If we interpret
the norms as Lebesgue integrals® then the L?[a, b] are complete, and therefore
Banach spaces. The theory of Lebesgue integration is rather complicated,
however, and is not really necessary. One way of avoiding it is explained in
exercise 2.2.

Exercise 2.1: Show that any convergent sequence is Cauchy.

2.2.3 Hilbert space

The Banach space L?[a,b] is special in that it is also a Hilbert space. This
means that its norm is derived from an inner product. If we define the inner
product

b
(f,9) = / frgdx (2.13)

then the L?[a, b] norm can be written
[fll2 =/ {f, f). (2.14)

When we omit the subscript on a norm, we mean it to be this one. You
are probably familiar with this Hilbert space from your quantum mechanics
classes.
Being positive definite, the inner product satisfies the Cauchy-Schwarz-
Bunyakouvsky inequality
(o)l < If1llgll (2.15)

That this is so can be seen by observing that

A+ pg Af + ng) = (A, 1) (Jﬂq'; <||j;|‘|q2>) (:) (2.16)

must be non-negative for any choice of A\ and p. We therefore select A = ||g/|,
p=—{f,9)"|lg||7, in which case the non-negativity of (2.16) becomes the
statement that

LA llgl* = 1¢f. 9)* > 0. (2.17)

2The “L” in L? honours Henri Lebesgue. Banach spaces are named after Stefan Banach,
who was one of the founders of functional analysis, a subject largely developed by him
and other habitués of the Scottish Café in Lvév, Poland.
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From Cauchy-Schwarz-Bunyakovsky we can establish the triangle inequal-
ity:

If+glI* = IfII* + lgl* + 2Re(f, )
< AP+ llgll* + 21Kf. 91,
< AP+ llgll* + 201l
= (If1+ llgh?, (2.18)
SO
If+gll < A1+ 1lgll- (2.19)

A second important consequence of Cauchy-Schwarz-Bunyakovsky is that
if f, — f in the sense that || f, — f|| — 0, then

[(fnrg) = (Lol = [{(fa = ), 9)]
< lfa = Fllgll (2.20)

tends to zero, and so
(fn9) = ([, 9)- (2.21)

This means that the inner product (f, g) is a continuous functional of f and
g. Take care to note that this continuity hinges on ||g|| being finite. It is for
this reason that we do not permit ||g|| = oo functions to be elements of our
Hilbert space.

Orthonormal sets

Once we are in possession of an inner product, we can introduce the notion
of an orthonormal set. A set of functions {u,} is orthonormal if

<um um> = Onm.- (2.22)

For example,
1
2/ sin(nmzx) sin(mnz) de = Opm, n,m=1,2,... (2.23)
0

so the set of functions u,, = v/2sinnmz is orthonormal on [0, 1]. This set of
functions is also complete — in a different sense, however, from our earlier
use of this word. A orthonormal set of functions is said to be complete if any
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function f for which || f||? is finite, and hence f an element of the Hilbert
space, has a convergent expansion

fla) =" au, ().

If we assume that such an expansion exists, and that we can freely interchange
the order of the sum and integral, we can multiply both sides of this expansion
by w} (), integrate over x, and use the orthonormality of the u,’s to read
off the expansion coefficients as a,, = (u,, f). When

117 = / (@) da (2.24)

and u, = v/2sin(n7x), the result is the half-range sine Fourier series.

Example: Expanding unity. Suppose f(x) = 1. Since f01|f|2d55 = 1is
finite, the function f(x) = 1 can be represented as a convergent sum of the
u, = V/2sin(nrz).

The inner product of f with the u,’s is

1 0, n even,
(U, ) = /0 V2sin(nra) do = 27{?7 o odd.
Thus,
1= i 4 sin<(2n + 1)m> i L2[0,1]. (2.25)
2n+1)m ’ ’

n=0

It is important to understand that the sum converges to the left-hand side
in the closed interval [0, 1] only in the L? sense. The series does not converge
pointwise to unity at x = 0 or x = 1 — every term is zero at these points.
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0.8

0.6

0.2 0.4 0.6 0.8 1

Figure 2.2: The sum of the first 31 terms in the sine expansion of f(z) = 1.

Figure 2.2 shows the sum of the series up to and including the term with
n = 30. The L?[0, 1] measure of the distance between f(z) = 1 and this sum
1-— Z 4 sin<(2n + 1)7rx>
(2n+ 1)m

1S
/1
0 n=0

We can make this number as small as we desire by taking sufficiently many
terms.

It is perhaps surprising that a set of functions that vanish at the end-
points of the interval can be used to expand a function that does not vanish
at the ends. This exposes an important technical point: Any finite sum of
continuous functions vanishing at the endpoints is also a continuous function
vanishing at the endpoints. It is therefore tempting to talk about the “sub-
space” of such functions. This set is indeed a vector space, and a subset of
the Hilbert space, but it is not itself a Hilbert space. As the example shows,
a Cauchy sequence of continuous functions vanishing at the endpoints of an
interval can converge to a continuous function that does not vanish there.
The “subspace” is therefore not complete in our original meaning of the term.
The set of continuous functions vanishing at the endpoints fits into the whole
Hilbert space much as the rational numbers fit into the real numbers: A fi-
nite sum of rationals is a rational number, but an infinite sum of rationals
is not in general a rational number and we can obtain any real number as
the limit of a sequence of rational numbers. The rationals Q are therefore
a dense subset of the reals, and, as explained earlier, the reals are obtained
by completing the set of rationals by adding to this set its limit points. In
the same sense, the set of continuous functions vanishing at the endpoints is

30 2

dx = 0.00654. (2.26)
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a dense subset of the whole Hilbert space and the whole Hilbert space is its
completion.

Exercise 2.2: In this technical exercise we will explain in more detail how
we “complete” a Hilbert space. The idea is to mirror the construction to
the real numbers and define the elements of the Hilbert space to be Cauchy
sequences of continuous functions. To specify a general element of L?[a,b]
we must therefore exhibit a Cauchy sequence f, € Cla,b]. The choice is not
unique: two Cauchy sequences fél)(x) and fy(?) (z) will specify the the same
element if

lim || £V — £2] = 0.
n—oo

Such sequences are said to be equivalent. For convenience, we will write
“limy, s00 fn = f7 but bear in mind that, in this exercise, this means that
the sequence f,, defines the symbol f, and not that f is the limit of the se-
quence, as this limit need have no prior existence. We have deliberately written
“f”, and not “f(x)”, for the “limit function” to warn us that f is assigned no
unique numerical value at any z. A continuous function f(x) can still be con-
sidered to be an element of L?[a,b]—take a sequence in which every f,(z) is
equal to f(x)—but an equivalent sequence of f,(z) can alter the limiting f(x)
on a set of measure zero without changing the resulting element f € L?[a,b].

i) If f,, and g, are Cauchy sequences defining f, g, respectively, it is natural
to try to define the inner product (f, g) by setting

(f,9) = lim_(fus gu).

Use the Cauchy-Schwarz-Bunyakovsky inequality to show that the num-
bers Fy, = (fn, gn) form a Cauchy sequence in C. Since C is complete,
deduce that this limit exists. Next show that the limit is unaltered if
either f, or g, is replaced by an equivalent sequence. Conclude that our
tentative inner product is well defined.

ii) The next, and harder, task is to show that the “completed” space is
indeed complete. The problem is to show that given a Cauchy sequence
fr € L?[a,b], where the fi are not necessarily in C[a,b], has a limit
in L?[a,b]. Begin by taking Cauchy sequences f; € Cla,b] such that
lim; .o fri = fix. Use the triangle inequality to show that we can select
a subsequence [}, ;x) that is Cauchy and so defines the desired limit.

Later we will show that the elements of L?[a, b] can be given a concrete meaning
as distributions.
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Best approximation

Let u,(z) be an orthonormal set of functions. The sum of the first NV terms of
the Fourier expansion of f(x) in the u,, is the closest— measuring distance
with the L? norm — that one can get to f whilst remaining in the space
spanned by uq, s, ..., uy.

To see this, consider the square of the error-distance:

A d:Of ||.f Za’nun||2 f Zamumaf Zanun
N
= |IfI? - Zanfun > ap, (um, ) + Za;an(um,un>
m=1

n,m=1

N N
= ||f||2—Zan<f,un > an (m, £) +> lanl, (2.27)
n=1 m=1 n=1

In the last line we have used the orthonormality of the u,. We can complete
the squares, and rewrite A as

A=|IfI? - Zlun, |2+Z|an— tn, )12 (2.28)

We seek to minimize A by a suitable choice of coefficients a,,. The smallest
we can make it is

N
Ain = FIP =D [uns ), (2.29)

and we attain this bound by setting each of the |a,, — (u,, f)| equal to zero.
That is, by taking
ap = (Up, f). (2.30)

Thus the Fourier coefficients (u,, f) are the optimal choice for the a,.
Suppose we have some non-orthogonal collection of functions g,, n =
1,...N, and we have found the best approximation 3>~ a,g.(z) to f(x).
Now suppose we are given a 9N+1 to add to our collection. We may then seek
an improved approximation Zn ! a gn () by including this new function —
but finding this better fit will generally involve tweaking all the a,,, not just
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trying different values of an,;. The great advantage of approximating by
orthogonal functions is that, given another member of an orthonormal family,
we can improve the precision of the fit by adjusting only the coefficient of the
new term. We do not have to perturb the previously obtained coefficients.

Parseval’s theorem

The “best approximation” result from the previous section allows us to give
an alternative definition of a “complete orthonormal set,” and to obtain the
formula a,, = (u,, f) for the expansion coefficients without having to assume
that we can integrate the infinite series > a,u, term-by-term. Recall that
we said that a set of points S is a dense subset of a space T' if any given
point x € T is the limit of a sequence of points in S, 7.e. there are elements
of S lying arbitrarily close to z. For example, the set of rational numbers Q
is a dense subset of R. Using this language, we say that a set of orthonormal
functions {u,(x)} is complete if the set of all finite linear combinations of
the u,, is a dense subset of the entire Hilbert space. This guarantees that, by
taking N sufficently large, our best approximation will approach arbitrarily
close to our target function f(z). Since the best approximation containing
all the u,, up to uy is the N-th partial sum of the Fourier series, this shows
that the Fourier series actually converges to f.

We have therefore proved that if we are given w,(z), n = 1,2,..., a
complete orthonormal set of functions on [a, b], then any function for which
|| f]|? is finite can be expanded as a convergent Fourier series

fl@) =" au, (), (2.31)
where )
an = (Up, f) = / ur (z) f(x) dx. (2.32)

The convergence is guaranteed only in the L? sense that
2

b N
lim i flx) — ; iy ()| dz = 0. (2.33)
Equivalently
N
Ay ==Y awu]*—=0 (2.34)

n=1
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as N — oo. Now, we showed in the previous section that

N
Ay = AP =D s HF
n=1

N

= AP =l (2.35)

n=1

and so the L? convergence is equivalent to the statement that

AP = lanl*. (2.36)

This last result is called Parseval’s theorem.
Example: In the expansion (2.25), we have || f?|| = 1 and

22
0, n even.
Parseval therefore tells us tells us that
- 1 11 2
S R 2.38
— (2n + 1)2 +32+52+ 8 (2.38)
Example: The functions wu,(z) = \/%—Weim, n € Z form a complete orthonor-
n}&l get on the interval [—m, 7]. Let f(x) = \/%eicx. Then its Fourier expan-
sion is
1, - 1
ix __ nx
——e = chn——e"", —Tm<ax<m, 2.39
V2T n;m V2T ( )
where | g in(r(C )
= = [ eitegmine gy = UG T ) 2.40
Cn = 5o _We e x T =) (2.40)
We also have that -
1£1? = / —dr = 1. (2.41)
. 2m

Now Parseval tells us that

pp= S Sl n) (2.42)

n=—0oo
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the left hand side being unity.
Finally, as sin?(7(¢ — n)) = sin?(7(), we have
cosec?(n¢) = _r i _ (2.43)
- P |

sin?(7()

n=—oo

The end result is a quite non-trivial expansion for the square of the cosecant.

2.2.4 Orthogonal polynomials

A useful class of orthonormal functions are the sets of orthogonal polynomials
associated with an interval [a,b] and a positive weight function w(z) such

that fabw(a:) dz is finite. We introduce the Hilbert space L2 [a,b] with the
real inner product

(u,v>w:/ w(z)u(x)v(z)de, (2.44)

and apply the Gram-Schmidt procedure to the monomial powers 1, x, 2%, 23, . ..

so as to produce an orthonomal set. We begin with

Bo(x) = 1/[[ 1w, (2.45)

where ||1]|, = 1/ ffw(:c) dzr, and define recursively

xP,(x) — S5 Pi(x){P;,zP,),,

i |xPn — > 0 Pil P, 2P |l
Clearly P,(x) is an n-th order polynomial, and by construction

All such sets of polynomials obey a three-term recurrence relation
zP,(x) = by Poi1(x) + anPp(x) + byo1 Pyo1 (). (2.48)

That there are only three terms, and that the coefficients of P, and P,_;
are related, is due to the identity

(Pp,xPp), = (P, Py), - (2.49)
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This means that the matrix (in the P, basis) representing the operation of
multiplication by x is symmetric. Since multiplication by x takes us from
P, only to P,.1, the matrix has just one non-zero entry above the main
diagonal, and hence, by symmetry, only one below.

The completeness of a family of polynomials orthogonal on a finite interval
is guaranteed by the Weierstrass approximation theorem which asserts that
for any continuous real function f(x) on [a, b], and for any € > 0, there exists
a polynomial p(z) such that |f(z) — p(x)| < € for all x € [a,b]. This means
that polynomials are dense in the space of continuous functions equipped
with the ||...||o norm. Because |f(z) — p(z)| < e implies that

/ |f(z) — p(z)Pw(z) do < 62/ w(z) dz, (2.50)

they are also a dense subset of the continuous functions in the sense of L? [a, ]
convergence. Because the Hilbert space L2 [a,b] is defined to be the comple-
tion of the space of continuous functions, the continuous functions are auto-
matically dense in L2 [a,b]. Now the triangle inequality tells us that a dense
subset of a dense set is dense in the larger set, so the polynomials are dense in
L2 [a, b] itself. The normalized orthogonal polynomials therefore constitute a
complete orthonormal set.

For later use, we here summarize the properties of the families of polyno-
mials named after Legendre, Hermite and Tchebychef.

Legendre polynomials

Legendre polynomials have a = —1, b = 1 and w = 1. The standard Legendre
polynomials are not normalized by the scalar product, but instead by setting
P,(1) = 1. They are given by Rodriguez’ formula

1 da ., "
P,(x) = 2nn!%(:c - 1™ (2.51)
The first few are
Po(r) = 1,
P(z) = =,

Pye) = 532 -1),
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1
Py(z) = 5(5:53 — 3x),

1
Py(z) = 5(35‘54 — 302° + 3).

Their inner product is

1
2
P, P, = . 2.52
/_1 () Py () dx 2n—|—15nm (2.52)

The three-term recurrence relation is
(2n+ D)aPy(x) = (n+ 1) Poyi(r) + nBy (). (2.53)

The P, form a complete set for expanding functions on [—1, 1].

Hermite polynomials

The Hermite polynomials have a = —oo, b = 400 and w(z) = e~*", and are
defined by the generating function
2t 3 L e (2.54)
N ‘ n! " ’ )
If we write
e2tw—t2 — egvz—(m—t)z7 (255>
we may use Taylor’s theorem to find
dn 2 2 2 dn 2
Hn _ 7z —(z—t) — (—1)"e® —— " 2.
(1) = 5o = e, (256)

which is a a useful alternative definition. The first few Hermite polynomials
are

() = 1,

(z) = 2z,

() = 42* -2

(r) = 8z°—12x,

() = 162" —482% + 12,

EEFEER
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The normalization is such that
/ Hy(2)Hp ()™ dz = 2"n!\/Tm, (2.57)

as may be proved by using the generating function. The three-term recur-
rence relation is
2eH,(z) = Hpy1(2) + 2nH,—1(x). (2.58)

Exercise 2.3: Evaluate the integral
o 2 2 2
F(S,t) :/ e % 62550—5 e2tx—t dx
—o0

and expand the result as a double power series in s and ¢t. By examining the
coefficient of st show that

/ Hn(x)Hm(:E)e_“"”2 dr = 2"n\\/76pm.

Problem 2.4: Let )

en(x) = WH

be the normalized Hermite functions. They form a complete orthonormal set
in L?(R). Show that

$)e—x2/2

1 {4xyt— (2 +yH) (1 +1?)

(1 —t2) 2(1 — ¢2) }, 0<t<l.

o

> t"en(@)on(y) =
n=0

This is Mehler’s formula. (Hint: Expand of the right hand side as >~>7  an(, t)¢n (y)-
To find a,(x,t), multiply by e259=5"=v*/2 and integrate over y.)

Exercise 2.5: Let ¢,(x) be the same functions as in the preceding problem.
Define a Fourier-transform operator F' : L?(R) — L?(R) by

U == [ emfas

With this normalization of the Fourier transform, F'4 is the identity map. The
possible eigenvalues of F' are therefore +1, +i. Starting from (2.56), show that
the ¢, (z) are eigenfunctions of F', and that

F(pn) = i"pn(z).
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Tchebychef polynomials

Tchebychef polynomials are defined by taking a = —1, b = +1 and w(x) =
(1 — 22)*Y/2 The Tchebychef polynomials of the first kind are

T, () = cos(ncos™' ). (2.59)
The first few are
T(](.ZL’) = 1,
Tl(x) = I,
Ty(z) = 22° —1,
Ts(x) = 42° — 3.

The Tchebychef polynomials of the second kind are

_sin(ncos™'z) 1,
Up-1(z) = sin(cos—17) = nTn(x) (2.60)
and the first few are
U—l(x) = 07
UO(x) = ]-7
Ul(x) = 2LU,
UQ(ZL’) = 41’2—1,
Us(x) = 8z° — 4.

T, and U, obey the same recurrence relation

22T, = Tn+1 + Tn—l>
22U, = Up1+U,1,
which are disguised forms of elementary trigonometric identities. The orthog-

onality is also a disguised form of the orthogonality of the functions cosné
and sinnf. After setting x = cos 6 we have

™ 1 1
/ cosnb cosmb df = / T.(2) T (x) de = hydpm, n,m, >0,
0 1V 1 — 22
(2.61)
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where hy =7, h, =7/2, n >0, and

™ 1
/ sin nf sin m df = / V1—22U,_1(2)Up_1(x) dx = gdnm, n,m > 0.
' 1 (2.62)
The set {T,,(x)} is therefore orthogonal and complete in Lfl_ﬂ),m[—l, 1],
and the set {U,(z)} is orthogonal and complete in L?I_wQ)l/z[—l, 1]. Any
function continuous on the closed interval [—1, 1] lies in both of these spaces,
and can therefore be expanded in terms of either set.

2.3 Linear Operators and Distributions

Our theme is the analogy between linear differential operators and matrices.
It is therefore useful to understand how we can think of a differential operator
as a continuously indexed “matrix.”

2.3.1 Linear operators

The action of a matrix on a vector y = Ax is given in components by
yi = Ay;. (2.63)

The function-space analogue of this, g = Af, is naturally to be thought of as

o(z) = / Ale,y)f () dy. (2.64)

where the summation over adjacent indices has been replaced by an inte-
gration over the dummy variable y. If A(x,y) is an ordinary function then
A(z,y) is called an integral kernel. We will study such linear operators in
the chapter on integral equations.

The identity operation is

b
f(x) = / 5z — y)f(y) dy, (2.65)

and so the Dirac delta function, which is not an ordinary function, plays the
role of the identity matrix. Once we admit distributions such as d(x), we can
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Figure 2.3: Smooth approximations to §(z — a) and 0'(z — a).

think of differential operators as continuously indexed matrices by using the
distribution

§'(x) = “%5(@”. (2.66)

The quotes are to warn us that we are not really taking the derivative of the
highly singular delta function. The symbol §'(z) is properly defined by its
behaviour in an integral

/5’(:c—y)f(y)dy = /%Mw—y)f(y)dy

= —/ f(y)d%cS(f—y)dy

b
— / f'(y)d(x —y)dy, (Integration by parts)
= fl(=).

The manipulations here are purely formal, and serve only to motivate the
defining property

/ 5(r — ) f(y) dy = f'(x). (2.67)

It is, however, sometimes useful to think of a smooth approximation to
0'(x — a) being the genuine derivative of a smooth approximation to §(z—a),
as illustrated in figure 2.3.
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We can now define higher “derivatives” of d(x) by

/ 50 (2) f(x)dz = (~1)" F™(0), (2.68)

a

and use them to represent any linear differential operator as a formal integral
kernel.

Example: In chapter one we formally evaluated a functional second derivative
and ended up with the distributional kernel (1.186), which we here write as

k(z,y) = —% (p(y)%é(y - :L“)) +q(y)o(y — z)
= —p(y)d"(y —x) —p'(y)d'(y — ) + q(y)o(y — x). (2.69)

When k acts on a function u, it gives

//f(x, yu(y)dy = / {=pW)d"(y — ) = ' (1)d'(y — ) + a(y)d(y — )} uly) dy
= /5(y — 2) {=[pW)u®)]" + [P’ @)uly)] + aly)u(y)} dy
= / oy — 2) {=py)u"(y) — p'(Y)u'(y) + a(y)u(y)} dy

— 1 (o) + et (270

The continuous matrix (1.186) therefore does, as indicated in chapter one,
represent the Sturm-Liouville operator L defined in (1.182).

Exercise 2.6: Consider the distributional kernel
k(x,y) = az(y)0" (x — y) + a1 (y)8' (z — y) + ao(y)d(x — ).
Show that
[ et dy = (@@)u@)” + (@ @) + a@u(a).
Similarly show that
k(z,y) = ag(2)d" (z — y) + a1(2)d' (z — y) + ao(x)d(x — ),

leads to

/ ke, y)u(y) dy = as(@) (z) + ar (@) (z) + ao(x)uz).
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Exercise 2.7: The distributional kernel (2.69) was originally obtained as a
functional second derivative

0

benm) = 5o <5y($2)

= _d%g <p(9€2)d%25(332 - ﬂfl)) + q(w2)0 (22 — 11).

6J[y] )

By analogy with conventional partial derivatives, we would expect that

5y<6x1> (52@)) B 6y<5x2> <6(Z£:yl]>> ’

but z1 and z9 appear asymmetrically in k(x1,z9). Define

kT (21, m2) = k(z2,21),

and show that
/kT(xl,xg)u(xg)da:Q = /k(xl,xg)u(ajg)dxg.

Conclude that, superficial appearance notwithstanding, we do have k(x1,x2) =
k(xg, I ) .

The example and exercises show that linear differential operators correspond
to continuously-infinite matrices having entries only infinitesimally close to
their main diagonal.

2.3.2 Distributions and test-functions

It is possible to work most the problems in this book with no deeper under-
standing of what a delta-function is than that presented in section 2.3.1. At
some point however, the more careful reader will wonder about the logical
structure of what we are doing, and will soon discover that too free a use
of §(z) and its derivatives can lead to paradoxes. How do such creatures fit
into the function-space picture, and what sort of manipulations with them
are valid?

We often think of §(z) as being a “limit” of a sequence of functions whose
graphs are getting narrower and narrower while their height grows to keep
the area under the curve fixed. An example would be the spike function
d:(x — a) appearing in figure 2.4.
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Figure 2.4: Approximation 6.(x — a) to d(z — a).

The L? norm of 4.,
1

- (2.71)

6,17 = [ 16.() o =
tends to infinity as € — 0, so d. cannot be tending to any function in L?.
This delta function has infinite “length,” and so is not an element of our
Hilbert space.
The simple spike is not the only way to construct a delta function. In
Fourier theory we meet

A .
2 dk  1sinAx
Sa(z) = e — = = 2.72
A@) /_Ae 2r  m x (2.72)
which becomes a delta-function when A becomes large. In this case
00 142
s sin“Ax

Again the “limit” has infinite length and cannot be accommodated in Hilbert
space. This d,(x) is even more pathological than §.. It provides a salutary
counter-example to the often asserted “fact” that d(z) = 0 for x # 0. As
A becomes large d,(0) diverges to infinity. At any fixed non-zero x, how-
ever, dp(x) oscillates between £1/x as A grows. Consequently the limit
limp 0o 05 () exists nowhere. It therefore makes no sense to assign a numer-
ical value to d(z) at any x.

Given its wild behaviour, is not surprising that mathematicians looked
askance at Dirac’s §(z). It was only in 1944, long after its effectiveness in
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solving physics and engineering problems had become an embarrassment,
that Laurent Schwartz was able to tame d(z) by creating his theory of dis-
tributions. Using the language of distributions we can state precisely the
conditions under which a manoeuvre involving singular objects such as ¢’ (x)
is legitimate.

Schwartz’ theory is built on a concept from linear algebra. Recall that
the dual space V* of a vector space V is the vector space of linear functions
from the original vector space V' to the field over which it is defined. We
consider d(x) to be an element of the dual space of a vector space T of test
functions. When a test function ¢(x) is plugged in, the §-machine returns
the number (0). This operation is a linear map because the action of § on
Ap(z)+px(x) is to return Ap(0)4ux (0). Test functions are smooth (infinitely
differentiable) functions that tend rapidly to zero at infinity. Exactly what
class of function we chose for 7 depends on the problem at hand. If we are
going to make extensive use of Fourier transforms, for example, we mght
select the Schwartz space, S(R). This is the space of infinitely differentiable
functions (p(z) such that the seminorms®

d™e
dz™

(Plon = sD {|x|" } (2.74)

zeR
are finite for all positive integers m and n. The Schwartz space has the
advantage that if ¢ is in S(R), then so is its Fourier transform. Another
popular space of test functions is D consisting of C'™° functions of compact
support—meaning that each function is identically zero outside some finite
interval. Only if we want to prove theorems is a precise specification of T
essential. For most physics calculations infinite differentiability and a rapid
enough decrease at infinity for us to be able to ignore boundary terms is all
that we need.

The “nice” behaviour of the test functions compensates for the “nasty”
behaviour of §(x) and its relatives. The objects, such as d(x), composing the
dual space of T are called generalized functions, or distributions. Actually,
not every linear map 7 — R is to be included in the dual space because,
for technical reasons, we must require the maps to be continuous. In other
words, if ¢,, — ¢, we want our distributions u to obey u(¢,) — u(¢). Making
precise what we mean by ¢, — ¢ is part of the task of specifying 7. In the

3A seminorm |- --| has all the properties of a norm except that || = 0 does not imply
that ¢ = 0.
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Schwartz space, for example, we declare that ¢, — ¢ if o, — ¢|nm — 0, for
all positive m,n. When we restrict a dual space to continuous functionals,
we usually denote it by V' rather than V*. The space of distributions is
therefore 7.

When they wish to stress the dual-space aspect of distribution theory,
mathematically-minded authors use the notation

5(¢p) = #(0), (2.75)

or

(6, 0) = (0), (2.76)

/5(:c)go(x) dx = (0). (2.77)

The expression (4, ¢) here represents the pairing of the element ¢ of the
vector space T with the element § of its dual space T'. It should not be
thought of as an inner product as the distribution and the test function lie in
different spaces. The “integral” in the common notation is purely symbolic,
of course, but the common notation should not be despised even by those in
quest of rigour. It suggests correct results, such as

/ Saz — BYp(z) dz = ——(b/a), (2.78)

lal

which would look quite unmotivated in the dual-space notation.
The distribution ¢'(x) is now defined by the pairing

(0", 0) = —¢(0), (2.79)

where the minus sign comes from imagining an integration by parts that
takes the “derivative” off d(x) and puts it on to the smooth function ¢(x):

“/5'(93)g0(a:) dx” = —/5(x)g0’(:5) dr. (2.80)
Similarly 6 (z) is now defined by the pairing

(6™, ) = (=1)"¢"(0). (2.81)
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The “nicer” the class of test function we take, the “nastier” the class
of distributions we can handle. For example, the Hilbert space L? is its
own dual: the Riesz-Fréchet theorem (see exercise 2.10) asserts that any
continuous linear map F' : L? — R can be written as F[f] = (I, f) for some
[ € L?2. The delta-function map is not continuous when considered as a
map from L? — R however. An arbitrarily small change, f — f +46f, in a
function (small in the L? sense of ||§ f|| being small) can produce an arbitrarily
large change in f(0). Thus L? functions are not “nice” enough for their
dual space to be able accommodate the delta function. Another way of
understanding this is to remember that we regard two L? functions as being
the same whenever | f; — f2|| = 0. This distance will be zero even if f;
and fy differ from one another on a countable set of points. As we have
remarked earlier, this means that elements of L? are not really functions
at all — they do not have an assigned valued at each point. They are,
instead, only equivalence classes of functions. Since f(0) is undefined, any
attempt to interpret the statement [ d(z)f(z)dx = f(0) for f an arbitrary
element L? is necessarily doomed to failure. Continuous functions, however,
do have well-defined values at every point. If we take the space of test
of functions 7 to consist of all continuous functions, but not demand that
they be differentiable, then 77 will include the delta function, but not its
“derivative” ¢'(x), as this requires us to evaluate f/(0). If we require the test
functions to be once-differentiable, then 7’ will include ¢'(x) but not §”(x),
and so on.

When we add suitable spaces T and T’ to our toolkit, we are constructing
what is called a rigged* Hilbert space. In such a rigged space we have the
inclusion

TcLl*=[LYcT. (2.82)

The idea is to take the space T’ big enough to contain objects such as the
limit of our sequence of “approximate” delta functions d., which does not
converge to anything in L2.

Ordinary functions can also be regarded as distributions, and this helps
illuminate the different senses in which a sequence u, can converge. For
example, we can consider the functions

u, =sinnrr, 0<z<I1, (2.83)

4“Rigged” as in a sailing ship ready for sea, not “rigged” as in a corrupt election.
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as being either elements of L?[0,1] or as distributions. As distributions we
evaluate them on a smooth function ¢ as

(un,go):/o o(x)uy(z) da. (2.84)

Now
lim (u,, p) =0, (2.85)

n—o0

since the high-frequency Fourier coefficients of any smooth function tend
to zero. We deduce that as a distribution we have lim,,_,. u, = 0, the
convergence being pointwise on the space of test functions. Considered as
elements of L?[0, 1], however, the u, do not tend to zero. Their norm is
||un]] = 1/2 and so all the w, remain at the same fixed distance from 0.

Exercise 2.8: Here we show that the elements of L?[a,b], which we defined
in exercise 2.2 to be the formal limits of of Cauchy sequences of continuous
functions, may be thought of as distributions.

i) Let ¢(x) be a test function and f,(x) a Cauchy sequence of continuous
functions defining f € L?. Use the Cauchy-Schwarz-Bunyakovsky in-
equality to show that the sequence of numbers (¢, f,,) is Cauchy and so
deduce that lim,, . (@, fr) exists.

ii) Let ¢(z) be a test function and j}(Ll)(x) and fr(Lz) () be a pair of equiva-
lent sequences defining the same element f € L?. Use Cauchy-Schwarz-
Bunyakovsky to show that

lim (p, £V — fi) = 0.
n—oo

Combine this result with that of the preceding exercise to deduce that
we can set

n—oo

and so define f = lim,,_,, fn as a distribution.

The interpretation of elements of L? as distributions is simultaneously simpler
and more physical than the classical interpretation via the Lebesgue integral.
Weak derivatives

By exploiting the infinite differentiability of our test functions, we were able
to make mathematical sense of the “derivative” of the highly singular delta
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function. The same idea of a formal integration by parts can be used to
define the “derivative” for any distribution, and also for ordinary functions
that would not usually be regarded as being differentiable.

We therefore define the weak or distributional derivative v(x) of a distri-
bution u(x) by requiring its evaluation on a test function ¢ € T to be

/v(:)s)gp(:z) dv & —/u(x)gp’(x) dx. (2.86)

In the more formal pairing notation we write

(v.9) £ ~(u¢). (2.87)
The right hand side of (2.87) is a continuous linear function of ¢, and so,
therefore, is the left hand side. Thus the weak derivative v’ = v is a well-
defined distribution for any w.

When u(z) is an ordinary function that is differentiable in the conven-
tional sense, its weak derivative coincides with the usual derivative. When
the function is not conventionally differentiable the weak derivative still ex-
ists, but does not assign a numerical value to the derivative at each point. It
is therefore a distribution and not a function.

The elements of L? are not quite functions — having no well-defined
value at a point — but are particularly mild-mannered distributions, and
their weak derivatives may themselves be elements of L?. It is in this weak
sense that we will, in later chapters, allow differential operators to act on L2
“functions.”

Example: In the weak sense

d
—lz| = sgn(z), (2.88)
dx

d

— = 20(x). 2.89
@ () = 20(2) (2.89)
The object |z| is an ordinary function, but sgn(z) has no definite value at
x = 0, whilst §(x) has no definite value at any x.

Example: As a more subtle illustration, consider the weak derivative of the
function In |z|. With ¢(x) a test function, the improper integral

I= —/ O'(x) In|z|de = — lim0 (/ +/ ) ¢'(x) In|z|dz  (2.90)
oo e,el— o o
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is convergent and defines the pairing (— In |z|, ¢"). We wish to integrate by
parts and interpret the result as ([In|z|], ). The logarithm is differentiable
in the conventional sense away from x = 0, and

In ol ()} = ~p(x) + Infelg!(x), 0. (291)

From this we find that

“nlel e = i { ([ [7) R+ (@it - e-omel)

(2.92)
So far € and &’ are unrelated except in that they are both being sent to zero.
If, however, we choose to make them equal, ¢ = &', then the integrated-out
part becomes

(#(e) = p(=2)) mfe] ~ 26/ (0) nfe], (2.93)

and this tends to zero as € becomes small. In this case

~le ) =t { ([ ) dewac). o

By the definition of the weak derivative, the left hand side of (2.94) is the
pairing ([In |z])’, ). We conclude that

d 1
—1 =P - 2.
Tl =7 (1), (2.95)

where P(1/z), the principal-part distribution, is defined by the right-hand-
side of (2.94). It is evaluated on the test function p(z) by forming [ ¢(z)/x dz,
but with an infinitesimal interval from —e to +¢, omitted from the range
of integration. It is essential that this omitted interval lie symmetrically
about the dangerous point x = 0. Otherwise the integrated-out part will
not vanish in the ¢ — 0 limit. The resulting principal-part integral, written
P [ ¢(z)/xdz, is then convergent and P(1/x) is a well-defined distribution
despite the singularity in the integrand. Principal-part integrals are common
in physics. We will next meet them when we study Green functions.

For further reading on distributions and their applications we recommend
M. J. Lighthill Fourier Analysis and Generalised Functions, or F. G. Fried-
lander Introduction to the Theory of Distributions. Both books are published
by Cambridge University Press.
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2.4 Further Exercises and Problems

The first two exercises lead the reader through a proof of the Riesz-Fréchet
theorem. Although not an essential part of our story, they demonstrate how
“completeness” is used in Hilbert space theory, and provide some practice
with “e,0” arguments for those who desire it.

Exercise 2.9: Show that if a norm || || is derived from an inner product, then
it obeys the parallelogram law

1F + gl + 1Lf = gll* = 201> + Ngll*)-

Let N be a complete linear subspace of a Hilbert space H. Let g ¢ N, and let
inf ||g— f|| =d.
Jnf llg — £l

Show that there exists a sequence f, € N such that lim, . ||fn — g| = d.
Use the parallelogram law to show that the sequence f,, is Cauchy, and hence
deduce that there is a unique f € N such that ||g — f|| = d. From this,
conclude that d > 0. Now show that ((9 — f),h) =0 for all h € N.

Exercise 2.10: Riesz-Fréchet theorem. Let L[h] be a continuous linear func-
tional on a Hilbert space H. Here continuous means that

Ilhy — k|| = 0= L[h,] — L[h].

Show that the set N = {f € H : L[f] = 0} is a complete linear subspace of H.
Suppose now that there is a ¢ € H such that L(g) # 0, and let [ € H be the
vector “g — f” from the previous problem. Show that

L[h] = {(ad,h), where o* = Llg]/(l,9) = Llg]/|l!]|*.

A continuous linear functional can therefore be expressed as an inner product.

Next we have some problems on orthogonal polynomials and three-term re-
currence relations. They provide an excuse for reviewing linear algebra, and
also serve to introduce the theory behind some practical numerical methods.

Exercise 2.11: Let {P,(z)} be a family of polynomials orthonormal on [a, b]
with respect to a a positive weight function w(x), and with deg [P,(x)] = n.
Let us also scale w(z) so that ff w(z)dr =1, and Py(z) = 1.
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a) Suppose that the P,(x) obey the three-term recurrence relation
2Py (z) = by Pyry1(z)+anPy(x)+bp—1Pp-1(x); P-1(z) =0, Py(z) =
Define
pn(x) = Pn(x)(bn—lbn—2 o bO):
and show that

2P () = pnt1(2) + anpn(x) + b5 _1pp-1(z); p-1(x) =0, po(z) = 1.

Conclude that the p,(x) are monic — i.e. the coefficient of their leading
power of x is unity.
b) Show also that the functions

b
Pn\T) — Pn
inta) = [ 2Dl o g
a T — 6
are degree n—1 monic polynomials that obey the same recurrence relation
as the p,(x), but with initial conditions go(x) =0, ¢1(x) = f;w dx = 1.

Warning: while the g, (z) polynomials defined in part b) turn out to be very

useful, they are not mutually orthogonal with respect to ( , ),,.

Exercise 2.12: Gaussian quadrature. Orthogonal polynomials have application
to numerical integration. Let the polynomials {P,(z)} be orthonormal on [a, b]
with respect to the positive weight function w(zx), and let z,, v =1,..., N be
the zeros of Py(z). You will show that if we define the weights

= ’ Pr(@) w(x) dx
w= | P — ) )

then the approximate integration scheme

b
/ f@)w(z) e~ wif(@r) +waf(2) + - wn f(aw),

known as Gauss’ quadrature rule, is exact for f(x) any polynomial of degree
less than or equal to 2N — 1.

a) Let m(x) = (x — &)(z — &) -+ - (r — &n) be a polynomial of degree N.
Given a function F(z), show that

def ( )
ZF&” TN - &)

is a polynomial of degree N — 1 that coincides with F(z) at x = &,,
v=1,...,N. (This is Lagrange’s interpolation formula.)

CHAPTER 2. FUNCTION SPACES
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b) Show that if F'(x) is polynomial of degree N — 1 or less then Fp(x) =

c) Let f(z) be a polynomial of degree 2N — 1 or less. Cite the polynomial
division algorithm to show that there exist polynomials Q(z) and R(x),
each of degree N — 1 or less, such that

f(x) = Py (2)Q(x) + R(z).
d) Show that f(z,) = R(x,), and that

/ab f(@)w(x)dx = /ab R(z)w(z) dx.

e) Combine parts a), b) and d) to establish Gauss’ result.

f) Show that if we normalize w(x) so that [wdz = 1 then the weights w,
can be expressed as w, = gn(x,)/Py(x,), where p,(x), gn(x) are the
monic polynomials defined in the preceding problem.

The ultimate large-N exactness of Gaussian quadrature can be expressed as

w(x) = A}gnoo {Z 5z — a:,,)w,,} .

Of course, a sum of Dirac delta-functions can never become a continuous
function in any ordinary sense. The equality holds only after both sides are
integrated against a smooth test function, i.e., when it is considered as a
statement about distributions.

Exercise 2.13: The completeness of a set of polynomials {P,(x)}, orthonor-
mal with respect to the positive weight function w(x), is equivalent to the

statement that
> 1
ZPn(JL")Pn(Z/) = w&iﬂ —y).
n=0
It is useful to have a formula for the partial sums of this infinite series.

Suppose that the polynomials P,(z) obey the three-term recurrence relation
2P, (x) = by Pry1(x) + anPp(z) + bpy—1Py—1(x); P_1(x) =0, Py(x) = 1.

Use this recurrence relation, together with its initial conditions, to obtain the
Christoffel-Darbouz formula

_ by_a[Py (@) Py—1(y) — PN—1($)PN(Z/)].
r—Yy

N-1
Z Po(z)Pu(y)
n=0
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Exercise 2.14: Again suppose that the polynomials P, (x) obey the three-term
recurrence relation

zP,(x) = by Pot1(x) + an Py (z) + bp—1Pr—1(z); P-i(x) =0, Py(z) = 1.

Consider the N-by-N tridiagonal matrix eigenvalue problem

-CLN_l bN_2 0 0 0 _UN—l UN -1
by—2 an—2 by-z O ... 0 UN_2 UN—2
0 by-3 an—3 by—g ... O UN_3 UN_3
. . . . e x N
0 ‘o b2 as bl 0 (%) (25
0 0 by aq bo U1 U1
| 0 0 0 bo ag | [ Uo | L Uo |
a) Show that the eigenvalues x are given by the zeros z,, v = 1,...,N

of Py(x), and that the corresponding eigenvectors have components
Up = Pp(xy),n=0,...,N —1.

b) Take the x — y limit of the Christoffel-Darboux formula from the preced-
ing problem, and use it to show that the orthogonality and completeness
relations for the eigenvectors can be written as

N-1
ZPn(a:,,)Pn(xu) = w;léw,
n=0

N
Zw,,Pn(a:,,)Pm(x,,) = Spm, nm<N-—-1,

v=1

where w1 = by_1 Py (2,) Prn—1(z1).

c) Use the original Christoffel-Darboux formula to show that, when the
P, (z) are orthonormal with respect to the positive weight function w(z),
the normalization constants w, of this present problem coincide with the
weights w, occurring in the Gauss quadrature rule. Conclude from this
equality that the Gauss-quadrature weights are positive.

Exercise 2.15: Write the N-by-N tridiagonal matrix eigenvalue problem from
the preceding exercise as Hu = zu, and set dy(z) = det (I — H). Similarly
define d,, () to be the determinant of the n-by-n tridiagonal submatrix with z—
Gn_1,-..,T—ag along its principal diagonal. Laplace-develop the determinant
d,,(x) about its first row, and hence obtain the recurrence

dpt1(z) = (2 — an)dp(x) — bi—ldn—l(‘r)-
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Conclude that

det (21 — H) = py(z),

where p,,(z) is the monic orthogonal polynomial obeying

Tpn(2) = pry1(2) + anpn(x) + b2_1pn1(2);  p-1(z) =0, po(z) = 1.

Exercise 2.16: Again write the N-by-N tridiagonal matrix eigenvalue problem
from the preceding exercises as Hu = zu.

a)

Show that the lowest and rightmost matrix element
(0/(2I = H)~'0) = (21 — H)g'

of the resolvent matriz (xI — H)™! is given by a continued fraction
G'N-1,0(z) where, for example,

G3,z(x): b2
0
Tr —apg —
2
Tr—ay — bl
2
b2
Tr —ag —
r—az+z

Use induction on n to show that

Qn(x)z + Qn-i-l(x)
pn(‘r)z +pn+1(x)7

Gnz(x) =

)

where p,(x), ¢,(x) are the monic polynomial functions of x defined by
the recurrence relations

xpn(x) = pn—i—l(x) + anpn(x) + b%—lpn—l(x)a p—l(x) =0, pO(‘T =1,
240 (2) = Gui1(z) + angn(®) + 02 _1qn-1(x), qo(x) =0, qi(z) = 1.

Conclude that

- an(z)
0[(zI — H)~Y0) = ,
01~ p) = X
has a pole singularity when x approaches an eigenvalue x,. Show that
the residue of the pole (the coefficient of 1/(x — x,)) is equal to the
Gauss-quadrature weight w, for w(x), the weight function (normalized
so that f wdzx = 1) from which the coefficients a,, b, were derived.

89
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Continued fractions were introduced by John Wallis in his Arithmetica
Infinitorum (1656), as was the recursion formula for their evaluation. Today,
when combined with the output of the next exercise, they provide the math-
ematical underpinning of the Haydock recursion method in the band theory
of solids. Haydock’s method computes w(z) = limy_o0o {D_, 6(z — z,)w, },
and interprets it as the local density of states that is measured in scanning
tunnelling microscopy.

Exercise 2.17: The Lanczos tridiagonalization algorithm. Let V be an N-
dimensional complex vector space equipped with an inner product ( , ) and
let H:V — V be a hermitian linear operator. Starting from a unit vector uy,
and taking u_; = 0, recursively generate the unit vectors u,, and the numbers
an, by and ¢, by

Hu,, = byuy,41 + apu, +cp_1uy_1,
where the coefficients
a, = (uy,Huy,),

-1 = (up—1,Huy),
ensure that u,4; is perpendicular to both u, and u,_1, and
bn, = ”Hun — apUln — Cn—lun—l”y
a positive real number, makes ||u,41|| = 1.

a) Use induction on n to show that u,4;, although only constructed to be
perpendicular to the previous two vectors, is in fact (and in the absence
of numerical rounding errors) perpendicular to all u,, with m < n.

b) Show that a,, ¢, are real, and that ¢,—1 = b,_1.

c) Conclude that by_; = 0, and (provided that no earlier b, happens to
vanish) that the u,, n =0,..., N — 1, constitute an orthonormal basis
for V, in terms of which H is represented by the N-by-N real-symmetric
tridiagonal matrix H of the preceding exercises.

Because the eigenvalues of a tridiagonal matrix are given by the numerically
easy-to-find zeros of the associated monic polynomial py(z), the Lanczos al-
gorithm provides a computationally efficient way of extracting the eigenvalues
from a large sparse matrix. In theory, the entries in the tridiagonal H can be
computed while retaining only u,,, u,—1; and Hu,, in memory at any one time.
In practice, with finite precision computer arithmetic, orthogonality with the
earlier u,, is eventually lost, and spurious or duplicated eigenvalues appear.
There exist, however, stratagems for identifying and eliminating these fake
eigenvalues.
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The following two problems are “toy” versions of the Lax pair and tau func-
tion constructions that arise in the general theory of soliton equations. They
provide useful practice in manipulating matrices and determinants.

Problem 2.18: The monic orthogonal polynomials p;(x) have inner products

ipi), = [ pi@lpoyu(o) de = hid,
and obey the recursion relation

zpi(x) = pis1(x) + aipi(x) + b7 1pi—1(x);  p-1(z) =0, po(z) = 1.

Write the recursion relation as

Lp = zp,
where
L= 1 an b% 0 , P= D2
0 1 ai bg P1
0 0 1 a Po

Suppose that
(o]
w(z) = exp {— Ztna:"} ,
n=1

and consider how the p;(z) and the coefficients a; and b? vary with the pa-
rameters t,,.

a) Show that
op
gy, v/ ((0)
atn p7
where M(™ is some strictly upper triangular matrix - i.e. all entries on
and below its principal diagonal are zero.

b) By differentiating Lp = xp with respect to t,, show that

OL
= — M
. M L.

¢) Compute the matrix elements

. n) - n — 82%’
ML) = 315 =15 (s, 5
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(note the interchange of the order of ¢ and j in the ( , ), product!) by
differentiating the orthogonality condition (p;,p;), = hid;j. Hence show
that

M® — (L")+

where (L") denotes the strictly upper triangular projection of the n’th
power of L — i.e. the matrix L", but with its diagonal and lower trian-
gular entries replaced by zero.

Thus
OL
oty
describes a family of deformations of the semi-infinite matrix L that, in some
formal sense, preserve its eigenvalues .

= [(Ln)+ 7L]

Problem 2.19: Let the monic polynomials p,(x) be orthogonal with respect
to the weight function

w(z) —exp{ Ztn:n}

Define the “tau-function” 7, (t1,t2,ts...) of the parameters t; to be the n-fold

integral
n o
n(ty,ta, ... // /dxldx2 dx, A? (z )exp{—z Ztmxﬁl}
v=1m=1
where
x]” 1 xy” 2 1
1 n—2
xy Ty oo a9 1
Ax) = : : = H(x,, —x,)
: : v<p
xz_l x2_2 T, 1
is the n-by-n Vandermonde determinant.
a) Show that
OISR | pn-1(x1) pno2(z1) ... pi(z1) polw1)
xh 1 xh 2 1 1

pn-1(z2) Pn-2(x2) ... p1(z2) po(2)

e U S | Pn-1(n) Dn-2(xn) ... p1(zn) po(xn)
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b) Combine the identity from part a) with the orthogonality property of the
pn(x) to show that

pn(z) = %/dazldazg cdz, A% (2) H(x — x,) exp {— Z Z tmx,/m}

pu=1 v=1m=1
W Tn(t],th,th, . ..)
Tn(t1,t2,t3,...)
where
1

/o
t = tm + —.

Here are some exercises on distributions:

Exercise 2.20: Let f(x) be a continuous function. Observe that f(z)d(z) =
f(0)d(x). Deduce that

2 f@)o(@) = 7(0)5'(x).

If f(x) were differentiable we might also have used the product rule to conclude

that P
[ @)6()] = '(@)3(@) + f(@)3 (2).

Show, by evaluating f(0)d'(x) and f'(z)d(x) + f(2)d'(x) on a test function
(), that these two expressions for the derivative of f(z)d(x) are equivalent.

Exercise 2.21: Let ¢(x) be a test function. Show that

i [yt -r [ e

Show further that the right-hand-side of this equation is equal to

i () ) = Ly

Exercise 2.22: Let 0(x) be the step function or Heaviside distribution

1, x>0,
O(x) = { undefined, z =0,
0, z < 0.
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By forming the weak derivative of both sides of the equation

lim In(z +ic) = In|z| + in0(—x),

e—04

lim < ! , > =P <l> —imd(x).
e—04 \ T + 1€ T

Exercise 2.23: Use induction on n to generalize exercise 2.21 and show that

conclude that

n—1

(P 2o = [ - E -]

o (n)
- P/ Y da.
N

Exercise 2.24: Let the non-local functional S[f] be defined by

PR o AR T C)

Compute the functional derivative of S[f] and verify that it is given by
o0 /
CRRYY Sy

/
P

6f(x) ~ wda

See exercise 6.10 for an occurence of this functional.



Chapter 3

Linear Ordinary Differential
Equations

In this chapter we will discuss linear ordinary differential equations. We will
not describe tricks for solving any particular equation, but instead focus on
those aspects the general theory that we will need later.

We will consider either homogeneous equations, Ly = 0 with

Ly = po(@)y™ +pr(2)y" Y + - + pal)y, (3.1)
or inhomogeneous equations Ly = f. In full,
po(@)y"™ + pr(2)y" Y + - 4 pala)y = f(2). (3.2)

We will begin with homogeneous equations.

3.1 Existence and Uniqueness of Solutions

The fundamental result in the theory of differential equations is the existence
and uniqueness theorem for systems of first order equations.

3.1.1 Flows for first-order equations

Let 2!, ..., 2", be a system of coordinates in R", and let X*(z!, 22, ..., 2" t),
1 =1,...,n, be the components of a t-dependent vector field. Consider the

95
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system of first-order differential equations

1
% = X'(z' 2% ... 2" ),
2
% = X%*(2' 2% ... 2",
"
% = X"l a? ... 2" ). (3.3)
For a sufficiently smooth vector field (X!, X2 ..., X™) there is a unique solu-

tion z*(¢) for any initial condition z*(0) = z}. Rigorous proofs of this claim,
including a statement of exactly what “sufficiently smooth” means, can be
found in any standard book on differential equations. Here, we will simply
assume the result. It is of course “physically” plausible. Regard the X° as
being the components of the velocity field in a fluid flow, and the solution
2%(t) as the trajectory of a particle carried by the flow. An particle initially at
2'(0) = z, certainly goes somewhere, and unless something seriously patho-
logical is happening, that “somewhere” will be unique.
Now introduce a single function y(t), and set

1

= Y
2 =y,
=
" = gyl (3.4)
and, given smooth functions py(t),...,pn(t) with po(t) nowhere vanishing,
look at the particular system of equations
d 1
dat
dt
d 2
= _ s
dt
dxn—l .
= €T s
dt
dx™ 1
— = —— (pa" "+t puat). (3.5)

dt Do
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This system is equivalent to the single equation

n n—1
O T 0 et =0 (36)
Thus an n-th order ordinary differential equation (ODE) can be written as a
first-order equation in n dimensions, and we can exploit the uniqueness result
cited above. We conclude, provided pg never vanishes, that the