
Electromagnetic radiation

Wave propagation is a subject that's heavily emphasized in undergraduate electricity and magnetism courses.   But the waves come 
from somewhere and that is the topic of radiation.   For physical insight let's begin with a discussion drawn from volume II of The Feynman 
Lectures on Physics.  Imagine a uniform infinite (+) sheet of positive charge lying in the x-y plane.    If it is stationary then Gauss's Law says 
there is a static electric field (red arrow) pointing along along the +z direction for z > 0 and along the – z direction when z < 0.  There is no 
current so there is no B field so there are no waves produced by this charge distribution.  A static field produces no radiation.

In the second figure the sheet is suddenly accelerated along the +y direction.  There is now a sheet of current along +y shown by the 
green arrows.   This generates a magnetic field B(t).   To find B consider the rectangle whose sides are parallel to x and z and encloses a 
portion of the charge sheet.  By Ampere's law,

!𝐵 ⋅ 𝑑𝑙 = 𝜇! )𝐽 ⋅ 𝑑𝐴

The line integral of B around the rectangle equals the flux of the current J through it.  Since the sheets are infinite, B can only lie along the + 
or – x axis, as shown.  B has changed from 0 to some non-zero value so it is a time-varying B-field so Faraday's law implies that a time-
dependent E field is generated along the y-axis.   That timy-varying E field now generates a B field, which in turn generates an E field and so 
on.  The accelerated sheet of charge has generated E and B fields that obey the wave equation and propagate along the +/- z directions.   The 
key ingredient for this classical radiation process is the acceleration of charge. 
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The dipole antenna

Radiation encompasses everything from microwave towers to gamma rays emitted from nuclei so we will need to focus on just a few 
examples.   To begin, recall how to find the electric field produced by a time-independent distribution of charge, described by some charge 
density 𝜌 𝑟 .   The electric potential 𝜙 𝑟 is obtained by integrating over the charge distribution and then taking the gradient to obtain the 
electric field 𝐸.  

𝜙 𝑟 =
1

4𝜋𝜖!
)

𝜌 𝑟′
𝑟 − 𝑟′

𝑑𝑟" 𝐸 = −∇𝜙 ,

𝑟𝑟'

𝜙 𝑟

𝜌 𝑟′

With static charge distributions it is often simpler to avoid the potentials and just use Gauss's Law or Ampere's law to obtain 𝐸 or 𝐵
directly.    However, with radiation fields, it is mathematically much easier to first find the potentials and then take derivatives to get the 
electric and magnetic fields.   And in quantum theory, the potentials are really the more fundamental quantities.   Focus on the vector 
potential 𝐴 .   The essential complication in finding the radiation fields is the finite speed of light c.  The potential at point 𝑟 and time t is 
determined by what the charges and currents were doing at 𝑟' (as in the static case) but at an earlier time, 

𝑡# = 𝑡 −
𝑟 − 𝑟′
𝑐

Similarly, if there is some distribution of current described by a current 
density 𝐽 𝑟 then we need to integrate over the region where this current 
exists to obtain the vector potential  𝐴 .   The magnetic field 𝐵 is then 
obtained by taking the curl of 𝐴 ,

𝐴 =
𝜇!
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𝑑𝑟" 𝐵 = 𝑐𝑢𝑟𝑙 𝐴

Remember that 𝑟 is the point of observation the potential and 𝑟' points to 
the regions of charge or current density over which we need to integrate.   
You might also see the notation 𝑑𝑟" = 𝑑𝑥"𝑑𝑦"𝑑𝑧" = 𝑑𝑉′. 
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The quantity tR is called the retarded time.  It differs from the time t by the amount of time it takes light to go from point 𝑟' (where the 
charge and current sources are) to the observation point 𝑟.   This makes the calculation much more difficult.   You can look up the proof in 
any E&M textbook so I will just state the formal solution for the vector potential when the current density  𝐽 𝑟, 𝑡 depends on time:
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This expression is similar the static case but now 𝐽 𝑟′, 𝑡 is evaluated at the retarded time tR ,  which itself depends on 𝑟 and 𝑟' .  This integral 
is usually difficult to do but luckily there are many applications in which we care only about the fields that are very far away from the sources 
producing them and that greatly simplifies things.  

We'll first look at the case of a half-wave antenna 
shown on the left.  It's shown by thick green wires 
extending from z = 0 to d/2 and from z = 0 to -d/2 
where  𝑑 = ⁄𝜆 2 .   𝜆 = ⁄𝑐 𝑓 is the wavelength of the 
radiation and 𝑓 = ⁄𝜔 2𝜋 is the frequency.   For FM radio 
at f = 100 MHz, 𝜆 = 3 m so the antenna would be d = 
1.5 m long. 

The antenna is fed at z = 0 by a pair of wires carrying 
currents  𝐼# 𝑐𝑜𝑠𝜔𝑡 in and out respectively.  The current 
on the antenna itself is maximum at z = 0 and goes to 
zero at each end of the antenna, so the current density 
along the antenna has the form,

𝐽 𝑟 ′, 𝑡 = 𝐼# 𝑐𝑜𝑠𝜔𝑡 𝑐𝑜𝑠 𝑘𝑧′ 𝛿 𝑥′ 𝛿 𝑦′ 𝑧̂

where 𝑘 = ⁄2𝜋 𝜆 .   Charges slosh back and forth along 
the antenna at the driving frequency f.   During half of 
the cycle the top end is positive and the bottom end is 
negative and then things reverse.  

The observation point  𝑟 is far away from the antenna so r >> d, 𝜆 .   𝑟̂ is a unit vector parallel to 𝑟 and 𝑟" points to places along the antenna 
where we need to integrate the current.  From the figure you can see that 𝑟" = 𝑧"𝑧̂. The fields close to the antenna (known as the near zone) 
are quite complicated but we will focus on the fields far away in what's termed the far zone or the radiation zone.  



Since all the equations we use are linear, its permissible to represent sinusoidal quantities by complex exponentials and at the end of the 
calculation, take the real part of the answer to get the physical quantities.   For example the current density can be written as
𝐽 𝑟′, 𝑡 = 𝐼# 𝑐𝑜𝑠𝜔𝑡 𝑐𝑜𝑠 𝑘𝑧′ 𝛿 𝑥′ 𝛿 𝑦′ 𝑧̂ = 𝐼# 𝑐𝑜𝑠 𝑘𝑧′ 𝛿 𝑥′ 𝛿 𝑦′ G𝑧 Re 𝑒$%&' .   The vector potential is now, 
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Next, we need to simplify 𝑟 − 𝑟 ′ .   Out in the radiation zone 𝑑 ≪ 𝑟 so 𝑟′ ≪ 𝑟 so we can we can approximate 𝑟 − 𝑟 ′ :

𝑟 − 𝑟 ′ = 𝑟 − 𝑟 ′ + = 𝑟+ − 2𝑟 ⋅ 𝑟" + 𝑟"+ ≈ 𝑟+ − 2𝑟 ⋅ 𝑟" = 𝑟+ − 2𝑟𝑧" cos 𝜃 ≈ 𝑟 − 𝑧" cos 𝜃

Using this approximation and substituting ⁄𝜔 𝑐 = 𝑘 , 
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The physical field is obtained by taking the real part of this complex expression.  Things can be further simplified because out in the radiation 
zone it's a good approximation to set 𝑟 − 𝑧" cos 𝜃 ≈ 𝑟 in the denominator.   We are left with a one-dimensional integral over z' .   
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It's a wave but with a peculiar angular dependence that is very important for signal communications.  

With some patience and trig identities this expression reduces to, 
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Radiated Power 

Given the vector potential we can now find 𝐵)23 and then  𝐸)23 .  The vector potential has been written things in terms of spherical 
coordinates r and 𝜃.   To find  𝐵)23 = 𝑐𝑢𝑟𝑙 𝐴 the unit vector 𝑧̂ needs to be in spherical coordinates: 𝑧̂ = 𝑟̂ cos 𝜃 − V𝜃 sin 𝜃 .   Taking 𝑐𝑢𝑟𝑙 𝐴
there are terms proportional to 1/r, 1/r2 and 1/r3 .   𝐵)23 corresponds to the 1/r terms only.   Why?  The radiation fields are the ones that 
carry energy off to infinity.   Remember that the Poynting vector 𝑆 gives the energy per unit time flowing per unit area,

𝑆 =
1
𝜇!

𝐸 𝑥 𝐵

The total power radiated away is the integral of 𝑆 over the surface of a sphere of radius r surrounding the antenna.   Since the surface area of 
a sphere is 4𝜋𝑟+ then S must will vary as 1/r2 in order for the power to be non-zero:

𝑃𝑜𝑤𝑒𝑟 = !𝑆 ⋅ 𝑑𝐴 ~
𝑟+

𝑟+
> 0

This implies that the radiated fields  𝐸)23 and 𝐵)23 must both decrease as 1/r.   Fields that decrease as 1/r2 or 1/r3 lead to a Poynting vector 
that decreases as 1/r4 or faster.   The surface integral of 𝑆 would then vanish as 𝑟 → ∞ .  Therefore no net power is radiated to infinity by such 
fields.  They oscillate but they don't radiate.  With that in mind, take 𝑐𝑢𝑟𝑙 𝐴 and keep only the part that varies as 1/r:

𝐵)23 =
𝜇!𝐼# sin 𝑘𝑟 − 𝜔𝑡

2𝜋𝑟
cos 𝜋

2 cos 𝜃
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c𝜙

The radiated magnetic field is azimuthal.  In the far zone the electric 
field has magnitude Erad = cBrad and is perpendicular to both the 
direction 𝑟̂ of the radiated wave and to 𝐵)23 :

𝐸)23 = 𝑐𝐵)23 𝑥 𝑟̂ = 𝑐 𝐵)23 V𝜃

The unit vectors in spherical coordinates are shown in the figure.  
The Poynting vector 𝑆 points radially out along 𝑟̂ .  

𝑟̂

K𝜃

K𝜙



It's common to show the magnitude of the Poynting vector on a polar plot to emphasize the directionality of the antenna.  Writing everything 
out we have, 

𝑆 =
𝑍!𝐼!+
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𝑟̂ 𝑍! = 𝜇!𝑐 ≈ 120 𝜋 ≈ 377 Ω

Taking the time average of 𝑆 over one cycle converts the 𝑠𝑖𝑛+ 𝑘𝑟 − 𝜔𝑡 into a factor of ½.   The time-averaged power per unit area radiated in 
the direction 𝜃 is now given by, 
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https://en.wikipedia.org/wiki/Dipole_antenna

z axis

𝜃

𝑓 𝜃

Antenna

The radiation pattern as a function of angle 𝜃 is shown on the polar plot.  There is no 
power radiated along the axis of the antenna and maximum power radiated 
perpendicular to the antenna axis.   The pattern doesn't depend on the azimuthal angle  
𝜙 so it's symmetrical about the antenna axis.  The radiated power pattern looks like a 
donut. 

Antenna

Since the dipole antenna radiation pattern is symmetrical around the z-axis, it's not very efficient.  If you wish to send most of the energy in one 
direction then a more complicated antenna design is needed.  Often, this involves an array of dipole antennas. 



Radiation resistance

The time-average total radiated power is obtained by integrating 𝑆 over the surface of a sphere of radius r: 
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The quantity R0 is called the radiation resistance of the antenna.   If you were to drive the same current 𝐼# 𝑐𝑜𝑠𝜔𝑡 through a resistor of value R0

it would dissipate the same amount of power as the antenna radiates away.  For the half-wave dipole antenna 𝑅! ≈ 73.09 Ω .  For other 
antenna shapes and sizes it will be different. This simple situation holds only at the resonant frequency of the antenna.  If you drive it at a 
frequency which does not correspond to an integral number of half-wavelengths then the antenna acts like circuit involving R0 , capacitance and 
inductance. 

Radiation resistance is important because we wish to radiate out the maximum power possible for a given generator voltage.   The figure below 
shows the general idea.   A voltage generator with an output impedance Rgen drives a transmission line with a characteristic impedance Z which 
is connected to an antenna that appears to the circuit as a resistance R0.   To radiate the maximum power for a given generator voltage, we 
need Rgen = Z = R0.  In other words,  the generator is impedance-matched to the transmission line and the transmission line is impedance 
matched to the antenna. 

Experiments In EMC:  How Common Mode
Currents Are Created

By Glen Dash, Ampyx LLC, GlenDash at alum.mit.edu
Copyright 2000, 2005 Ampyx LLC

“I’ve all ready read the books on EMC and visited a lot of home pages... But all these references
did not mention anything about the physical phenomenon that causes common mode currents...
Are common mode emissions inherent in any physical system?  Can I model them?”

--Overheard on the ‘Net

It’s by no means a trivial question.  And, in spite of decades of hand waving by authors and
consultants, the principal mechanism by which common mode currents are created in digital
devices was not well understood until the decade of the 90s.  In this article, we’ll explore the
physics behind the creation of common mode currents, and perform some experiments to verify
our understanding.

We begin with the simplest of circuits, a signal source driving 10 cm of 300 ohm twin lead
shown in Figure 1.  In one way or another, all wire line communication has as its goal
transmitting signals faithfully from a source to a load.  Here the load is matched to the line, and
good fidelity can be expected.  (Note that since the transmission line is matched to the load, there
will be no reflection at the load end.  Therefore, it is not necessary that the source be matched to
the line.)

Figure 1: Our analysis starts with a simple circuit.  A voltage source drives a short length of 300 ohm twin
lead, terminated in a 300 ohm load.

The radiation that could be expected from the circuit in Figure 1 is relatively small.  We can
simulate the circuit on our Method of Moments simulator (Reference 1).  It predicts the radiation
at 3 meters for the circuit in Figure 1 to be approximately 1200 uV/m at 3m (in free space).

Antenna radiation resistance R0
Transmission line with
Characteristic impedance Z

Generator output 
impedance Rgen

Generator

You might think the coaxial cable would be the ideal transmission line but since its two 
conductors are not symmetrical, that can cause problems.  An old favorite, going back to the 
early days of TV, is twin-lead.   The spacing between the wires determines the characteristic 
impedance Z.   A widely used value is Z = 300 Ohm.   But that would be mismatched to a dipole 
antenna with 𝑅! ≈ 73.09 Ω .  This problem can be solved by the next scheme.  

Twin lead



Folded dipole

The figure below shows a dipole antenna but with the two ends connected to each other by another section of wire.  This is called a 
folded dipole.   Remember that in the original dipole, the current has a cos(kz)  shape (dotted line) which represents one half-wavelength.  If we 
connect the wire between the ends, this represents a full wavelength round trip so the current in the folded part must be in the same direction 
as in the original dipole piece.  That's like having two dipoles working in unison, so the fields will be twice as large for a given current.  But that 
means 4 times as much radiated power for the same current.  The radiation resistance is therefore 4 times as large,

𝑅5#6373 = 4 𝑅! = 4 𝑥 73.09 Ω = 292.4 Ω

This would be a better impedance match to the 𝑍 = 300 Ω twin lead transmission line. 

Current distribution
Io cos (kz)

Folded dipole antenna           Ordinary half-wavelength dipole antenna

Ground Effect

Antennas here on the earth must contend with the ground beneath them.   
Depending on the soil composition and the amount of absorbed water, the ground is a 
moderately good conductor.   Back in the 1800's the ground was actually used to carry the 
return current in telegraph systems.   As you know, time-varying electric and magnetic fields 
only partially penetrate a conductor. by a characteristic length called the skin depth 𝛿.  This 
is the distance beneath the surface of a conductor surface where the electric and magnetic 
fields have fallen to 1/e of their values at the surface,

𝐸 𝑥 = 𝐸 𝑥 = 0 𝑒$ ⁄9 :
𝐸
𝑥



In good conductors (metals) the skin depth varies as, 

𝛿 =
𝜌
𝜋𝜇𝑓

where ρ, 𝜇, 𝑓 are resistivity, permeability and frequency, respectively.    At f = 100 MHz, the skin depth in copper 𝛿 = 6.5 𝜇𝑚. For poor 
conductors like the ground, the above formula holds for low frequencies but above 5 – 10 MHz the skin depth becomes independent of 
frequency and 𝛿 is a few meters.   Nonetheless, it means that fields radiated by an FM radio antenna at 100 MHz are pretty much extinguished 
several meters below the ground.   Suppose, as a very rough approximation, we treat the ground as a perfect conductor so the electric and 
magnetic fields of radio waves are zero beneath the surface.   If we place an antenna above the ground, the E and B fields must satisfy the 
correct boundary conductions at the surface.   That implies that right at the surface, the component of E parallel to the surface and the 
component of B perpendicular to the surface must be zero.

https://en.wikipedia.org/wiki/Method_of_image_charges

Images charges and currents

Problems like this can often be handled by the method of images, 
shown here for a point charge +q held above a perfect conductor.   The 
conductor is replaced by an image charge –q located an equal distance below 
the boundary.  The electric field from both charges together obeys the 
boundary conduction imposed by the conductor (parallel component of E = 0 
at the surface).   The physical electric field above the conductor surface is 
shown by the solid lines.  It's just the field you would calculate from the two 
point charges.

A similar idea holds for currents.   If we place an antenna carrying a 
current above the ground, the problem is to find an image current beneath 
the surface that makes the parallel component of E and the perpendicular 
component of B go to zero at the surface.  The rule is that image currents 
parallel to the surface go in the opposite direction to those above the surface 
while image currents perpendicular to the surface go in the same direction 
as those above.  The rule is shown in the next figure.  



Physical Current

Image Current

Perfect conductor
Boundary

B
⨂⨀ ⨀

Solenoid
Current

A quick way to understand this rule is to think of a long solenoid coming out of the page, carrying a clockwise current.  The currents above and 
below the boundary have opposite parallel components and equal perpendicular components.  This produces a magnetic field that is always 
parallel to the boundary and has no component perpendicular to the boundary.   That's the same boundary condition that a perfect conductor 
would impose on the B-field.   Now think of the lower half of the solenoid as the image current for the top half.    

𝑧 = ⁄𝜆 4

Image antenna

Ground treated as a 
perfect conductor

𝑧 = ⁄− 𝜆 4

Physical antenna I(z,t)

I(z,t)

With that in mind, imagine we take our dipole antenna and cut 
it in half.  The top half, still ¼ wavelength long, now sits above the 
ground, which is approximated as a perfect conductor.   The effect of 
the ground on the E and B fields can be duplicated by an image of the 
top antenna, also ¼ wavelength long, carrying the same current in the 
vertical direction.   For the same driving current, the radiation pattern 
should be identical to our original half-wave antenna stuck out in free 
space.  Except of course that there are no E or B fields below the 
ground, so for the same antenna current, this antenna radiates only 
half the total power into space.   It therefore has half the radiation 
resistance, namely Rrad = 36.5 Ohms.  

The current generator would have one of its output wires 
connected to the antenna wire and the other half stuck in the ground.   
This arrangement is called a grounded Marconi antenna.  Importantly, 
we have used the nearby conducting surface to reduce the size of the 
physical antenna from ⁄𝜆 2 to ⁄𝜆 4 . 



Cell Phones

The size of hand-held phones is a major headache for antenna design.  The simple half-wave dipole antenna sets the appropriate scale 
for an efficient antenna at a given frequency, namely ⁄𝜆 2 . The Marconi antenna shows that a nearby conducting surface allows that to be 
cut in half, to ⁄𝜆 4. For example, the GPS antenna in the phone below operates at 1.575 GHz, corresponding to ⁄𝜆 4 ≈ 2 ". Many such 
compact antennas are variations on the F-shape shown on the right.   The large metallic rectangle is the ground plane – part of the phone 
structure itself.   The circular (+ -) gap is the feed point where the driving currents enter and leave.   The F shape is widely used since it allows 
some flexibility to vary the antenna length for the frequency band of interest.   There are also antennas on this phone designed for 900 and 
1800 MH.  Interestingly GPS uses right-circularly polarized radiation but that kind of selectivity is difficult to design into a small space so this 
antenna settles for selecting out one linearly polarized component of the incoming GPS signal.  

https://www.antenna-theory.com/design/gps.php

F-Shape



Bandwidth

The half-wave dipole antenna is a resonant system.  Its peak efficiency occurs when driven at that frequency f for which the length of the 
antenna is 𝐿 = ⁄𝜆 2 = ⁄𝑐 2𝑓 where c is the speed of light.   At just this frequency the antenna appears like a pure resistance R0 = 73 Ω to the 
generator driving the current.  If the generator and transmission line are matched to this value then no power is reflected back from the antenna 
toward the generator.  It all goes into radiation.   If, however, we transmit at a slightly different frequency then the antenna is no longer a pure 
resistance and some of the power is reflected back to the generator.   For a ⁄𝜆 2 antenna resonant at about 900 MHz, the coefficient of 
reflection has the behavior shown below.  It's a minimum right at resonance and increases as we move away from that frequency.  The antenna 
becomes less efficient.   The antenna bandwidth Δ𝑓 = 𝑓+ − 𝑓; is shown in the figure. f1 and f2 are often chosen to be the frequencies where the 
reflection coefficient has increased by ⁄1 2 from its minimum value – basically a measure of the width of the resonance curve. Defined in this 
way, ⁄Δ𝑓 𝑓 ≈ 0.08 for the ⁄𝜆 2 antenna.  

∆𝑓

A narrow bandwidth is desirable if you want to transmit or receive signals 
in a narrow range of frequencies and not interfere with anyone else.  On the 
other hand, you might want an antenna that receives signals over a wide range of 
frequencies, often needed in military applications.   The spiral antennas below 
are well-known broadband antennas which may have bandwidths of 10 GHz or 
more.   They are also sensitive to circularly polarized microwaves. 

https://www.researchgate.net/publication/344943034_
Design_of_a_miniaturized_dipole_RFID_tag_antenna/fi
gures?lo=1

https://jemengineering.com/blog-spiral-antennas/



Antenna Gain

Gain is a word we normally associate with amplifiers.  For antennas, it concerns the angular dependence of the radiation.   In the 
figure, the angular dependence that we worked out for the half-wave dipole antenna is shown with the two lobes described by the magnitude 
of the Poynting vector:

𝑆3%<#67 =
𝑍!𝐼!+

8 𝜋+ 𝑟+
cos 𝜋

2 cos 𝜃
𝑠𝑖𝑛 𝜃

+

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 = L𝑆3%<#67 𝑟+𝑑𝑟𝑑𝜙 sin 𝜃 𝑑𝜃 =
1
2
𝐼!+𝑅!

Now suppose the generator delivers the same amount of power  ;+ 𝐼!
+𝑅! to a hypothetical isotropic antenna.   (Hypothetical because there is no 

such antenna.)  Since this hypothetical antenna sends the power out equally in all directions, its Poynting vector will be the total power radiated 
by the dipole divided by the area of a sphere:

𝑆%=#')#<%* =
1
2 𝐼!

+𝑅!
4𝜋𝑟+

The gain of the real antenna is the ratio of the two Poynting vectors, 

𝐺𝑎𝑖𝑛 𝜃 =
𝑆3%<#67 𝜃
𝑆%=#')#<%*

𝑆3%<#67 𝜃 = ⁄𝜋 2
𝑆%=#')#<%*

= 1.64

Usually the antenna gain is taken to be its maximum value, 
which, for the dipole antenna,  is 90 degrees relative to the 
antenna axis.  In that direction the gain = 1.64.  Engineers prefer 
the decibel unit, defined by the logarithm, 

𝐺𝑎𝑖𝑛 𝑑𝐵 = 10 𝑙𝑜𝑔;!
𝑆3%<#67 𝜃
𝑆%=#')#<%*

The gain for an isotropic antenna is 0 dB. The maximum gain of 
the half-wave dipole antenna is 2.15 dB. For a highly 
directional antenna the gain can be much higher in the direction 
of maximum intensity, as shown.   

Sisotropic

S(𝜃)

https://www.ahsystems.com/articles/Understanding-antenna-gain-
beamwidth-directivity.php



Antenna effective area

Antennas are of course used for both transmitting and receiving electromagnetic radiation.  (Witness the bars on your cell phone.)   
But calculating the size of the signal received by an antenna is a much more difficult problem than calculating the power transmitted.   
Fortunately, nature let us off the hook.   But we first need to define a new quantity call the effective area Aeff of an antenna.     Suppose some 
radio station is beaming out radiation and there is distant antenna trying to receive it.   Let S be magnitude of the transmitted Poynting vector 
at the receiving antenna and let 𝑃)7*7%>73 be the time-averaged power extracted from the incoming wave by the receiving antenna.   Then 
the effective area of the receiving antenna is defined by,

𝑃,=3=0>=. = 𝑆 N 𝐴=??

The surprising result is that for any antenna, so long as it doesn't dissipate power itself (from resistance in its conducting wires), the effective 
area and the gain are simply proportional, involving just the wavelength of the radiation being received:

𝐴755
𝐺𝑎𝑖𝑛 (𝑚𝑎𝑥𝑖𝑚𝑢𝑚)

=
𝜆+

4𝜋

This equation is the connection between the transmitting and receiving properties of an antenna.   We previously calculated the gain for a 
half-wave dipole antenna by working out the transmitted fields.   But knowing the gain, the above equation gives us the effective area when 
we use the antenna as a receiver.   For example, consider the antenna below.   Its maximum gain is along the direction of the green lobe.   But 
that's also the direction of its maximum effective area.  As might seem intuitively obvious, to receive the strongest signal you should aim the 
green lobe at transmitter.  

Sisotropic

Gain(𝜃)

Transmitter



Reciprocity

The relationship between antenna gain and effective area is an example of what we call reciprocity. Subject to certain limitations on the 
transmitting medium, it's a general property of Maxwell's equations.  For a more familiar example consider a transformer consisting of the two 
coils of wire.   

Suppose we drive a current I1 through coil 1 with a generator.  
This produces a time dependent magnetic field B1(t).   Let Φ+;
be the magnetic flux through coil 2 due to the field produced 
by coil 1.  Then by Faraday's Law, the time rate of change Φ+;
induces a voltage V2 across its terminals,

𝑉5 =
𝑑Φ5@

𝑑𝑡
= 𝑀5@

𝑑𝐼@
𝑑𝑡

where M21 is the mutual inductance.  It relates the flux 
generated in coil 2 by the current through coil 1. 

Now turn things around and attach the generator to coil 2.  This drives a current I2 through coil 2 that produces a field B2(t) which in turn 
produces a time varying magnetic flux Φ;+ through coil 1.  By Faraday's law, this induces a voltage across the terminals of coil 1 given by,

𝑉@ =
.A"#
.2

= 𝑀@5
.B#
.2

where M12 relates the flux in coil 1 generated by a current in coil 2.    Using the simple case of a solenoid wrapped around another solenoid, it's 
easy to show that M12 = M21 .  But in fact this equality is true for any two coils and is an example of reciprocity.  There's no radiation involved 
here since the transformers operate in the near zone.  But the same idea holds true even if the mutual coupling were through the radiation 
fields, as in the next example. 

Consider two scenarios. 

Imagine there are two antennas radiation resistance R1 and R2 respectively. You can think of them as the two coils of a transformer that are 
very far apart,  but in fact they could be any shape – dipole, coil, whatever.   Each antenna is connected to an electrical circuit through which 
current can flow.   To ensure impedance matching, each circuit includes a real resistor equal to its respective antenna resistance.



Case 1.  Circuit 1 has a voltage generator V which drives a current through antenna 1 which transmits energy that is received by antenna 2.  The 
energy received by antenna 2 generates a sinusoidally varying current of amplitude I2 through circuit 2.   Then I2 = Y21 V .

Antenna 1 Antenna 2

R2R1
V

I1 = Y12 V

Antenna 1

R1

V

Antenna 2

R2

I2 = Y21 V

Case 2. Leaving everything else the same, now move the generator V so it drives a current through antenna 2.   It becomes the transmitter and 
antenna 1 is the receiver.   Antenna 1 picks up the incoming waves and generates a sinusoidally varying current of amplitude I1 = Y12 V through 
circuit 1.  

Reciprocity states that Y12 = Y12 .  This statement is a generalization of the statement that for transformers M12 = M21.   It turns out there are 
similar reciprocity theorems for sound waves.   A good reference can be found at https://www.cv.nrao.edu/~sransom/web/Ch3.html. 

https://www.cv.nrao.edu/~sransom/web/Ch3.html


Hertzian dipole radiator

Antennas are ubiquitous in modern life but the electromagnetic radiation we mostly experience doesn't come from radio stations or 
cell phone towers but from atoms and molecules giving off visible light.  But an atom is not a classical object and there is no obvious current 
generator driving the charge back and forth.   In order to make a plausible connection to the quantum theory of radiation we'll first go back 
and rework the classical theory of radiation for a very small antenna whose size d << 𝜆 where 𝜆 is the wavelength of emitted light.   This is 
generally called a Hertzian dipole radiator.  It contrasts with the hlaf-wave antenna for which 𝑑 = ⁄𝜆 2 .   The inequality d << 𝜆 if certainly well-
satisfied for atoms, in which d < 1 nm and the shortest wavelength for visible light is 380 nm. 

Imagine a charge 𝑞 𝑡 = 𝑄 sin𝜔𝑡 that sloshes back and forth from z = d/2 to z = –d/2.  This amounts to a time-varying dipole moment 
given by p 𝑡 = 𝑑 m 𝑞 𝑡 = 𝑄𝑑 sin𝜔𝑡 = 𝑝! sin𝜔𝑡 .   The geometry is similar to the half-wave antenna but this dipole is so small that the 
current along z can be considered constant. The exact solution still has the same form as before:

𝑞(𝑡)

−𝑞(𝑡)

d

𝐴 𝑟, 𝑡

𝜃

z

𝑟

𝐴 𝑟, 𝑡 =
𝜇!
4𝜋 L

𝐽 𝑟" 𝑒$%& ' $ )⃗$)⃗"
*

𝑟 − 𝑟′ 𝑑𝑟"

The charge sloshing back and forth corresponds to a current ⁄𝐼 = 𝑑𝑞 𝑑𝑡 and a current 
density along the z-axis,

𝐽 𝑟 , 𝑡 = 𝐼 𝑡 𝛿 𝑥 𝛿 𝑦 𝑧̂ =
𝑑𝑞
𝑑𝑡

𝛿 𝑥 𝛿 𝑦 𝑧̂ = 𝑄𝜔 𝑐𝑜𝑠𝜔𝑡 𝛿 𝑥 𝛿 𝑦 𝑧̂

which is similar to the expression for the current density of the half-wave antenna.  However, we no 
longer have the cos 𝑘𝑧′ factor and we've replaced 𝐼! by 𝑄𝜔 .    Making those simplifications,  the vector 
potential for the Hertzian dipole radiator is now,

𝐴?%<#67 𝑟, 𝑡 ≈ 𝑅𝑒
𝜇!𝜔𝑄 𝑒

$%& '$)*

4𝜋𝑟
L

$3/+

3/+

𝑒$%,-! ./0 1 𝑑𝑧" 𝑧̂

Since we're assuming d << 𝜆 then 𝑘𝑧" ≪ 1 since z' in the integral never gets larger than d/2.   Therefore we can replace the 
exponential inside the integral by 1.   Writing the time derivative of the dipole moment as  𝑝̇ = 𝜔𝑑𝑄 𝑐𝑜𝑠 𝜔𝑡 the vector potential is given by, 



𝑆 A7)'- =
1
𝜇!

𝐸)23 𝑥 𝐵)23 =
𝜇!

16 𝜋+ 𝑐 𝑟+ 𝑝̈ +𝑠𝑖𝑛+ 𝜃 𝑟̂ =
𝜇!

32 𝜋+ 𝑐 𝑟+ 𝜔
B𝑝!+ 𝑠𝑖𝑛+ 𝜃 𝑟̂

where p0 = Qd.  For the Hertzian dipole the angular dependence of the radiation is simply 𝑠𝑖𝑛+ 𝜃 .  Although this is an entirely different function 
from the one derived for the half-wave antenna, the two radiation patterns actually look very similar.  Both have a donut shape with a maximum 
in the 𝜃 = 90° direction.   The maximum gain for the Hertzian dipole is 3/2. 

Hertzian dipole

z axis

𝜃

𝑓 𝜃

Antenna

Half-wave antenna

𝐴 𝑟, 𝑡 =
𝜇!
4𝜋𝑟

𝑝̇ 𝑡 −
𝑟
𝑐
𝑧̂

Next, use 𝐵 = 𝑐𝑢𝑟𝑙 𝐴. Since  p is evaluated at the retarded time, its argument includes r. Therefore, when taking the curl operation,  the 
chain rule gives terms that depend on 𝑝̈ , the second time derivative.  As before, we care only about the radiation fields, which are the terms 
that at vary as 1/r.   And in the radiation zone, 𝐸)23 = 𝑐𝐵)23 𝑥 𝑟̂. Putting it all together we obtain the time-averaged Poynting vector, 

The approximation we made to simplify the integral was,

𝑒/067! 89: ; ≈ 1 𝜆 ≪ 𝑚𝑎𝑥 𝑧′

This is generally called dipole approximation.   Including higher order terms in the Taylor expansion is necessary for shorter wavelength 
radiation.   We've introduced the Hertzian dipole radiator to motivate a brief discussion of radiation from atoms and molecules.



Radiation from quantum systems

Consider an atom sitting out in free space in a quantum state n = 2 with energy E2 .  It can spontaneously jump to a state n = 1 with 
energy E1 and emit a photon whose frequency f obeys hf = E2 – E1 where h = 6.626 x 10-24 Joule-sec is Planck's constant.   We've shown that the 
power radiated by a classical dipole is determined by the frequency and the dipole moment.  The quantum mechanical equivalent is obtained by 
first thinking of the classical expression for the dipole moment of of a charge distribution,

𝑝⃗ = L𝑟 𝜌 𝑟 𝑑𝑟

where 𝜌 𝑟 is the charge density at point 𝑟.   You might think to replace 𝑝⃗ by its quantum mechanical expectation value where the charge 
density is replaced by 𝑒 𝜓 𝑟 + which is the probability of finding an electron with wavefunction 𝜓 at point 𝑟 times its charge,

https://astronomy.swin.edu.au/cosmos/e/emission+line

𝑝 = L𝑒 𝜓 𝑟 + 𝑟 𝑑𝑟

However this quantity is zero for atomic states like 1s, 2s, 2p, etc. since they 
have definite parity.  But since we know that the radiation comes from 
transitions between atomic states, the relevant quantity for quantum 
radiation is the dipole moment operator between the initial and final 
quantum states, 

𝑝⃗;+ = ∫𝑒 𝜓5%C26∗ 𝑟 𝜓%C%'%26𝑑𝑟

For example, the initial state might be a 2p and the final state would be 1s. 
The probability per unit time for an atom in an initial excited state to decay 
to a lower energy final state and emit a photon is given by, 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
𝑠𝑒𝑐

∝ 𝐸%C%'%26 − 𝐸5%C26
E 𝑝⃗;+ + ∝ 𝜔E 𝑝⃗;+ +

This process is called spontaneous emission (to be distinguished from stimulated emission that occurs when we excite the atom with 
other photons.)  The radiated power will be the rate of spontaneous emission times the energy of the emitted photon ℏ𝜔 so, like the classical 
dipole radiator, the emitted power varies as 𝜔B 𝑝⃗;+ + . In classical radiation there is some "generator" that drives current back and forth on 
the antenna.   In quantum mechanics the generator ultimately comes from quantum fluctuations of the electromagnetic field.   Even with no 
applied fields ( 𝐸 , 𝐵 = 0 ) quantum mechanics tells us that the ground state of the electromagnetic field has 𝐸+ , 𝐵+ ≠ 0. The situation 
is analogous to a quantum harmonic oscillator in its ground state where position and momentum obey 𝑥 , 𝑝 = 0 but 𝑥+ , 𝑝+ ≠ 0 . 
The quantum theory of the electromagnetic field is a fascinating subject but beyond the scope of these lectures. 



For a DC circuit f = 0 so this inequality is satisfied, but if the battery were replaced by a sinewave generator running at f = 100 MHz (i.e., 
FM radio frequencies) then 𝜆 = 3 m and that is comparable to L.   In that case, wave propagation along the connecting wires becomes 
important.    In either case, we need to treat the wires connecting the generator to the load as a distributed circuit.  That's the subject of 
transmission lines, the most common example being the ubiquitous coaxial cable.  

Transmission Lines

In electronics, we initially focus on lumped circuits, in which all the electromagnetic fields are confined (lumped) inside 
circuit elements such as resistors, capacitors, inductors, batteries and so on.   The assumption is that the circuit components and 
the wires connecting them have negligible spatial extent.  But obviously that can't always be true because the speed of light c = 3 x 
108 m/sec is finite.   In the circuit below, suppose L = 1 meter.  When you close the switch it takes the light bulb t = L/c ≈ 3 nsec to 
find out about it.   If you were just turning on a light bulb you wouldn't notice a 3 nsec delay but if the switch and bulb were 
replaced by high-speed digital circuits then a 3 nsec delay would be easy to observe.

Or, look at it in the frequency domain.  The 
assumption of lumped circuit analysis is that the size L
of the circuit is much less than the free-space 
wavelength of light corresponding to the frequency at 
which the circuit operates, 

𝐿 ≪ 𝜆 =
𝑐
𝑓

L



The coaxial cable is used in probably every physics lab in the world and is the easiest to analyze.  Microstrip lines are used 
throughout printed circuitry.  Two-wire lines were used back in the early days to connect the TV to the antenna for receiving network 
broadcasts.   In each case an electromagnetic wave can propagate along the line.  Its time-dependent electric and magnetic fields exist in 
the space localized around the conductors.  The specific E and B field configurations will depend on the specific transmission line.  

The figure shows the E and B fields in a cross-section of a coax cable.   Imagine the 
coax inner conductor has radius a and uniform positive charge per unit length.   The 
outer conductor has an inner radius b and carries an equal and opposite negative 
charge per unit length.  Gauss's law leads to a radial electric field E and a voltage V 
between inner and outer conductor.     Using Q = CV, It's easy to see that the coax will 
have a capacitance per unit length C0 given by, 

𝐶! ⁄𝐹𝑎𝑟𝑎𝑑𝑠 𝑚𝑒𝑡𝑒𝑟 =
2𝜋𝜖!

𝑙𝑛 𝑏𝑎

We will focus on transmission lines like the ones 
shown on the left.  All three consist of two 
metallic conductors separated by an insulator 
which could be vacuum or a dielectric.   All three 
share one property – a constant cross-sectional 
shape in any plane perpendicular to the 
direction of propagation. 

The coax will have an inductance per unit length L0.  To find that, imagine a current I coming out of the inner conductor and use 
Ampere's law to find B.  To get the inductance per unit length use the energy stored in the B field for a length h of transmission line, 

1
2𝜇!

)𝐵5 𝑑𝑥𝑑𝑦𝑑𝑧 =
1
2
𝐿!ℎ 𝐼5 → 𝐿! ⁄𝐻𝑒𝑛𝑟𝑖𝑒𝑠 𝑚𝑒𝑡𝑒𝑟 =

𝜇!
2𝜋

𝑙𝑛
𝑏
𝑎



To find the inductance and capacitance per unit length for an arbitrarily-shaped transmission line you'll need to solve Maxwell's 
equations to get E and B and then relate them to the voltage and current via the energy equations:

𝜀<
2
)𝐸5 𝑑𝑥𝑑𝑦𝑑𝑧 =

1
2
𝐶!ℎ 𝑉5

1
2𝜇!

)𝐵5 𝑑𝑥𝑑𝑦𝑑𝑧 =
1
2
𝐿!ℎ 𝐼5

We will simply assume that for any transmission line there will be some C0

and L0 and go from there.  As we will soon show, wavelike solutions for E and 
B will propagate back and forth in the x direction.   Having given us C0 and L0 ,
E and B have served their purpose and we'll deal only with the voltage V (x,t) 
between the two conductors and I (x,t) which is the current flowing through 
the inner conductor. Unlike the situation in lumped circuits, V and I now 
depend on space as well as time.  

To understand the details of the propagation we’ll treat the 
transmission line as a series of infinitely small capacitors and inductors.  Each 
segment of the line with length Δx has a capacitance C0 Δx and inductance L0
Δx.  For each of these infinitesimal lumped circuits we can apply Kirchoff's
laws.   This treatment can be found in many places, but I always recommend 
The Feynman Lectures on Physics, Vol. 2. 

C0 Δx

L0 Δx L0 Δx L0 Δx L0 Δx

C0 Δx C0 Δx

x x + Δxx - Δx

x

ℎ



L0 Δx

V(x,t)
I(x,t)

V(x Δx ,t)

x x + Δx

Focus on the little inductor between x and x + Δx.  The voltage across 
it is given by,

𝑉 𝑥, 𝑡 − 𝑉 𝑥 + ∆𝑥, 𝑡 = 𝐿!∆𝑥
𝜕𝐼
𝜕𝑡

Expanding the left-hand side we have,  

−
𝜕𝑉
𝜕𝑥

∆𝑥 = 𝐿<∆𝑥
𝜕𝐼
𝜕𝑡

−
𝜕𝑉
𝜕𝑥

= 𝐿<
𝜕𝐼
𝜕𝑡

Next, focus on the capacitor 𝐶!∆𝑥 located at x.  Using 
current conservation, the current into the capacitor is,

𝐼 𝑥 − ∆𝑥 − 𝐼 𝑥 = 𝐼C = 𝐶! ∆𝑥
𝜕𝑉
𝜕𝑡

Expanding the left side gives,

− ��
�� = 𝐶�

��
��

These two boxed equations are known as the the Telegrapher’s Equations.  They 
are essentially Faraday’s Law and Ampere’s Law in the context of transmission lines.    
Taking the space derivative of the first equation, the time derivative of the second and 
setting the mixed partial derivatives of I to be equal, we get the wave equation:

𝜕5𝑉
𝜕𝑥5

= 𝐿!𝐶!
𝜕5𝑉
𝜕𝑡5

C0 Δx

V(x,t)
I(x,t)I(x - Δx, t)

x x + Δx

IC



There is an identical wave equation for the current I(x,t).   The transmission line supports wave-like solutions of V and I in which the 
phase velocity of the wave is given by, 

𝑐̃ = �
√�D�D

It can be shown that if the space surrounding the conductors of the transmission line is free of dielectrics, then 𝑐̃ = 𝑐 , the speed of light in a 
vacuum.  Usually there is a dielectric around, in which case C0 is proportional to the dielectric constant and the velocity is reduced accordingly.  
For coax cables, which typically have a Teflon-like dielectric between the inner and outer conductor, 𝑐̃ ≈ 0.6 𝑐 .

Characteristic Impedance

Since V and I both obey the wave equation, which is linear, we can use phasor analysis to examine waves at a particular angular 
frequency.  Represent the physical voltage and current along the line by the real part of phasors,  

V 𝑥, 𝑡 = 𝑅𝑒 K𝑉𝑒0 12/6E I 𝑥, 𝑡 = 𝑅𝑒 e𝐼𝑒0 12/6E

To find k,  substitute 𝑒% &'$,9 into the wave equation, take the derivatives and cancel 𝑒% &'$,9 from both sides:

𝜕5

𝜕𝑥5
𝑒0 12/6E =

1
𝑐̃5

𝜕5

𝜕𝑡5
𝑒0 12/6E 𝜔5 = 𝑐̃5𝑘5 → 𝑘 = ±

𝜔
𝑐̃

For a given frequency 𝜔 (assumed to be positive) there are waves travelling to the right 𝑘 = ⁄𝜔 𝑐̃ and waves travelling to the left (
)

𝑘 =
⁄− 𝜔 𝑐̃ .    The complete solution on a transmission line generally involves 4 waves: right and left going voltage and right and left going current 

waves.  But things simplify if we take a right-going voltage and current wave (denoted by a (+) subscript) and plug this solution into either one of 
the Telegrapher equations:

−
𝜕
𝜕𝑥

K𝑉F𝑒0 12/6E = 𝐿<
𝜕
𝜕𝑡

e𝐼F𝑒0 12/6E → 𝑘 K𝑉F = 𝜔𝐿! e𝐼F

Using the previous expression for the phase velocity, the ratio of the complex voltage amplitude to the complex current amplitude is given by,

c𝑉F
V𝐼F
=
𝜔𝐿!
𝑘

=
𝜔𝐿!
⁄𝜔 𝑐̃

= 𝐿!𝑐̃ = 𝐿!
1
𝐿!𝐶!

=
𝐿!
𝐶!

= 𝑍!



This ratio of complex amplitudes has the dimensions of Ohms and is called the characteristic impedance. If we now go through the 
calculation for a left-going wave we find that the characteristic impedance is  – Z0.  Denoting the right and left going complex amplitudes with a 
(+) or  (– ) subscript we have, 

K𝑉F
e𝐼F
= 𝑍!

K𝑉/
e𝐼/
= −𝑍!

Knowing the complex voltage amplitudes for right and left going voltage waves, we automatically know the corresponding amplitudes of the 
current waves.   The general solution at a given frequency is a sum of right and left-going waves,   

𝑉 𝑥, 𝑡 = 𝑅𝑒 K𝑉F𝑒0 12/6E + K𝑉/𝑒0 12F6E 𝐼 𝑥, 𝑡 = 𝑅𝑒 e𝐼F𝑒0 12/6E + e𝐼/𝑒0 12F6E

Using the characteristic impedance expressions, everything can be put in terms of just the right and left going voltage amplitudes, 

𝑉 𝑥, 𝑡 = 𝑅𝑒 K𝑉F𝑒0 12/6E + K𝑉/𝑒0 12F6E 𝐼 𝑥, 𝑡 = 𝑅𝑒
K𝑉F
𝑍!
𝑒0 12/6E −

K𝑉/
𝑍!
𝑒0 12F6E

To obtain the (+) and (-) voltage amplitudes will require two boundary conditions.   Although Z0 has the dimensions of Ohms, it is not a real 
resistance that dissipates energy!  Our transmission line model contained no resistors (although a more realistic model would include them).   
Z0 depends on the capacitance and inductance per unit length so it depends on the specific cross-sectional shape of the transmission line.  Coax 
cables typically have  Z0 ≈ 50 Ω. Two-wire lines such as old-fashioned antenna cable might have Z0 ≈ 300 Ω .  Characteristic impedances 
typically vary from about 10 – 500 Ohms, depending on the transmission line geometry.   The variation is not large because Z0 usually varies 
logarithmically with the cable dimensions.  For example, in coax cables Z0 varies as ln(R2/R1)  where R1 and R2 correspond to the radii of the 
inner and outer conductor, respectively.   For our transmission line model Z0  is real (i.e., resistive).   If we were to include some actual 
resistance, along with L0 and C0 , in the transmission line model, then Z0  would acquire an imaginary part.  However, for a great deal of high 
frequency electronics, treating Z0 as real is accurate enough.  

Boundary values

The next problem is to find c𝑉F and c𝑉$ .  Focus on the circuit shown below.  Without the transmission line this is just a voltage divider. 
The transmission line is a distributed circuit that connects the lumped circuits at x = 0 and x = L.   The assumption in such schematics is that the 
lumped circuits on either end have no spatial extent and can be treated with Kirchoff's voltage and current laws.  The transmission line piece 
has the general solution we just wrote down, with two unknown amplitudes.  The circuits on either end provide the two boundary conditions.



Focus first on the situation at x = 0.   The current from the generator must equal the total transmission line current at x = 0. For the 
transmission line current, set x = 0 in each exponential.  As usual, all the 𝑒%&' factors cancel out and we have,

e𝐼 = e𝐼F + e𝐼/ =
K𝑉F
𝑍!
−
K𝑉/
𝑍!

Using Kirchoff's voltage law at x = 0 we also have   c𝑉G − V𝐼𝑅H = c𝑉F + c𝑉$ .  Before solving set Rg = Z0.   In other words, the generator output 
impedance is purposely made equal to the characteristic impedance of the transmission line, typically 50 Ohms.   That is typical of most 
high frequency electronics.   With that, 

K𝑉F =
K𝑉G
2

This result has a simple physical interpretation.   If Z0 = Rg , then the transmission line divides the generator voltage by ½.   If, for example, 
Rg = Z0 = 50 Ohms, then the transmission line looks like a 50 Ohm resistor to the generator.  However, this holds true only so long as 
there is only a right-going wave present at x = 0.  That can happen if the generator produces a voltage step at t = 0.  The step voltage 
travels down the line, reflects off the far end and travels back in a total time 𝑇 = ⁄2𝐿 𝑐̃ .  Until that reflected wave reaches x = 0, the 
generator doesn’t know about it and the transmission line looks like a resistor of value Z0.  But after that, we need to add the reflected 
wave.   We'll leave that as a homework problem.

I

x =0 x = L

ILoad

Rg



We still need to solve for the left-going voltage amplitude.  To do that, go to x = L.  Again, the total current on the line at x = L must equal 
the current through the load impedance.  Using Kirchoff's current law,

e𝐼F𝑒/06H + e𝐼/𝑒06H = e𝐼H<-.

The total voltage on the line at x = L must equal the voltage across the load:

K𝑉F𝑒/06H + K𝑉/𝑒06H = 𝑍H e𝐼H<-.

Solving for the ratio of the complex voltage amplitudes we find, 
K𝑉/
K𝑉F
= 𝑒/506H

𝑍H − 𝑍!
𝑍H + 𝑍!

= 𝑒/506H ΓI

ΓI is known as the voltage reflection coefficient.  In general, ΓI is complex but there is one important case where it is zero.   That occurs when 
ZL = Z0 , the characteristic impedance of the line in which case there is no reflected wave.   This is called terminating the transmission line in its 
characteristic impedance.   It’s done everywhere in high frequency circuits to avoid reflections which cause standing waves and create 
problems.  The transmission lines often have Z0 = 50 Ω so both the input and output impedance of amplifiers (and other components) are 
purposely made to be 50 Ω .   If such an amplifier is connected to the line at x = L there will be no reflected wave.  

We now have everything to determine the currents and voltages in the circuit. The full solution is given by,

𝑉 𝑥, 𝑡 = 𝑅𝑒 K𝑉F𝑒0 12/6E + K𝑉/𝑒0 12F6E

𝐼 𝑥, 𝑡 = 𝑅𝑒
K𝑉F
𝑍!
𝑒0 12/6E −

K𝑉/
𝑍!
𝑒0 12F6E

x =0 x =L

ZL
Z0



x =0 x =L

ZL
Z0

Assume the generator is built with Rg = Z0 .  Also use the expression for the 
ratio of the left to right going voltage waves.  The voltage is given by, 

𝑉 𝑥, 𝑡 = 𝑅𝑒 K𝑉F𝑒0 12/6E + K𝑉/𝑒0 12F6E = 𝑅𝑒
K𝑉G
2
𝑒0 12/6E +

K𝑉G
2

ΓI 𝑒/506H𝑒0 12F6E

𝑉 𝑥, 𝑡 = 𝑅𝑒
K𝑉G
2
𝑒012 𝑒/06E + ΓI𝑒/506H𝑒06E

Similarly, the current is given by,

𝐼 𝑥, 𝑡 = 𝑅𝑒
K𝑉F
𝑍!
𝑒0 12/6E −

K𝑉/
𝑍!
𝑒0 12F6E = 𝑅𝑒

K𝑉G
2 𝑍!

𝑒012 𝑒/06E − ΓI𝑒/506H𝑒06E

We usually aren’t probing along the transmission line to measure V and I at each x but instead, we care about the behavior at x = 0 and x = L 
where things are connected.  For example, find the impedance looking into the line at x = 0.  That’s the ratio of the full complex voltage 
amplitude divided by the full complex current amplitude at x = 0:

𝑍 𝑥 = 0 =
K𝑉 𝑥 = 0
e𝐼 𝑥 = 0

=

K𝑉G
2 𝑒/06E + ΓI𝑒/506H𝑒06E

K𝑉G
2 𝑍!

𝑒/06E − ΓI𝑒/506H𝑒06E
= 𝑍!

1 + ΓI𝑒/506H

1 − ΓI𝑒/506H
= 𝑍!

𝑍H + 𝑖 𝑍< tan 𝑘𝐿
𝑍! + 𝑖 𝑍H tan 𝑘𝐿

This last formula is particularly useful and we will consider three different cases.   



1. Terminated Line:   First consider the case 𝑍J = 𝑍! in which case ΓI = 0 and there will be no reflected wave.  For any length of line, we 
have,

𝑍 𝑥 = 0 = 𝑍! 𝑍H = 𝑍!

As stated earlier, when there is no reflected wave, then no matter what the length of the transmission it appears to the generator like an 
impedance Z0 .  

2. Half-wave line: Suppose the line is one half-wavelength long, 𝐿 = ⁄𝜆 2 .   Then 𝑘 = ⁄2𝜋 𝜆 so 𝑘 = ⁄2𝜋 2𝐿 and,

tan 𝑘𝐿 = tan𝜋 = 0 → 𝑍 𝑥 = 0 = 𝑍H

In other words, if the line has length 𝐿 = ⁄𝜆 2 (or any integral multiple of that) then the generator thinks the load impedance is connected right 
at x = 0.   Of course in the time domain, the signal still takes a finite time to reach the load.  But in the steady state situation with a signal 
generator operating at constant frequency, the half-wave line is invisible. 

3. Quarter-wave line: Now consider a line with length 𝐿 = ⁄𝜆 4 . Then 𝑘 = ⁄𝜋 2𝐿 and we have,

tan 𝑘𝐿 = tan
𝜋
2
= ∞ → 𝑍 𝑥 = 0 =

𝑍!5

𝑍H

The transmission line inverts the load impedance.   If a quarter-wave line is short-circuited at x = L then ZL = 0 and, 

𝑍 𝑥 = 0 = ∞

To the generator, the line looks like an open circuit!  Similarly, if a quarter wave line is open-circuited at x = L then the generator thinks the line is 
short circuited.  The quarter-wave line acts like an impedance transformer.   If the load is capacitive then, 

𝑍H =
1
𝑖𝜔𝐶

→ 𝑍 𝑥 = 0 = 𝑍!5𝑖𝜔𝐶 = 𝑖𝜔𝐿 𝐿 = 𝑍!5𝐶

The line has effectively transformed a capacitor into an inductor.   The reverse would also be true. 



Standing waves

If right-going and left-going waves are both present on the line there will be standing waves.  Assuming we have a sinusoidal generator 
voltage, the voltage on the line V(x,t) would look something like this figure where different colors indicate different times.  At every point the 
voltage oscillates at 𝜔 and the amplitude of the oscillation varies sinusoidally with x.  It’s a standing wave.

From: nutsvolts.com

X = 0

To derive the envelope function of the standing wave, use the solution for the voltage on the line:

𝑉 𝑥, 𝑡 = 𝑅𝑒
K𝑉G
2
𝑒012 𝑒/06E + ΓI𝑒/506H𝑒06E

The expression inside the parentheses is the sum of two phasors, one of length VS/2 
(proportional to the right-going wave) and one of length ⁄ΓI 𝑉G 2 (proportional to the left-
going wave).  This total phasor, represented by the dashed vector, rotates counterclockwise 
at 𝜔 . Its projection on the x-axis is the physical voltage on the line.   To find the sum, write 
the reflection coefficient as ΓI = ΓI 𝑒%1 .  The phase difference between the two solid 
phasors is,

𝜑 = 𝑘𝑥 + 𝜃 − 2𝑘𝐿 − −𝑘𝑥 = 2𝑘 𝑥 − 𝐿 + 𝜃
K𝑉G
2
𝑒/06E

K𝑉G
2
ΓI 𝑒/506H𝑒06E

𝜑
VTotal



Now use the law of cosines to find the length of Vtotal :

𝑉2<2-J 5 =
I$
5

5
+ I$

5
ΓI

5
+ 2 I$

5

5
ΓI 𝑐𝑜𝑠𝜑 = I$

5

5
1 + ΓI 5 + 2 ΓI 𝑐𝑜𝑠 2𝑘𝑥 − 2𝑘𝐿 + 𝜃

This quantity varies as we move along x because the cosine changes from -1 to + 1.  

𝑉K<2-J L-E =
I$
5

1 + 2 ΓI + ΓI 5
"
# = I$

5
1 + ΓI

𝑉K<2-J L0M =
𝑉G
2

1 − 2 ΓI + ΓI 5
@
5 =

𝑉G
2

1 − ΓI

The standing waves have a minimum and maximum amplitude as shown below,

From: nutsvolts.com

X = 0

The ratio of these two values is known as the voltage standing wave ratio, known as VSWR:

𝑉𝑆𝑊𝑅 =
𝑉L-E
𝑉L0M

=
1 + ΓI
1 − ΓI



Impedance matching

Suppose we have a load resistance RL  to which we wish to transfer the maximum power.  If the generator has the effective circuit shown 
in the shaded box, then the maximum power it can deliver to a load occurs when R0 = RL.   However, RL is generally not equal to R0 so what can 
be done?  The solution is an impedance-matching circuit that tricks the generator into thinking that it’s connected to a load of resistance R0.   
This can be done with L’s and C’s or you can use a transmission line to do it.   

RL
Impedance 
matching 
circuit

R0

VS
RL

tan 𝑘𝐿 = tan
𝜋
2
= ∞ → 𝑍 𝑥 = 0 =

𝑍!5

𝑅H

Once again, mexploit the impedance transformation properties of a ⁄𝐿 = 𝜆 4 transmission line:

Z(x = 0)

x =0 ⁄𝐿 = 𝜆 4

R0 RL
To impedance match RL to the generator we choose,

𝑍 𝑥 = 0 =
𝑍!5

𝑅H
= 𝑅! → 𝑍! = 𝑅H𝑅!

So to impedance match the generator to the load, you need to make a transmission line with Z0 equal to the geometric mean of R0 and RL .  And 
it needs to be a quarter wavelength long at the frequency where you wish to operate.    But how to make a transmission line with a specific 
characteristic impedance? The next slide shows one way.



Microstrip

Microstrip is a transmission line configuration that is widely used in high frequency circuits.  It consists of a conducting strip sitting on a 
dielectric, beneath which is a conducting ground plane.  The right-hand figure shows the configuration of E and H fields.  

The nice thing about microstrip is that by adjusting the ratio W/h you can set the characteristic impedance Z0 .   An approximate formula is,

𝑍! 𝑂ℎ𝑚𝑠 ≈
377

𝑊
ℎ + 1 𝜖, + 𝜀,

As the frequency moves toward 1 GHz and beyond, this approximate formula no longer holds for several reasons:

(1) the dielectric constant is frequency-dependent and develops a resistive (i.e., loss) component.  
(2) The transmission line model must include dielectric loss and a frequency-dependent resistance due to the skin depth of the metal.  
(3) The field configuration shown is a transverse electromagnetic (TEM) wave in which E and H are perpendicular to the direction of propagation.   
This configuration holds true so long as W and h are much less than the wavelength of the wave.   This, in turn, is typically valid for frequencies 
well below 10-15 GHz, after which non-TEM modes may appear and complicate things considerably.   



https://www.thphys.uni-heidelberg.de/~wolschin/eds14_3s.pdf
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Cherenkov radiation

Cherenkov radiation was first observed by Marie Curie more than a century ago and later explained by Cherenkov, Frank and Tamm.  It 
involves the electromagnetic radiation by a medium as a charged particle passes through it very rapidly.   The kinematic features are like the 
sonic boom from an airplane travelling faster than the speed of sound.   In the figure below, imagine an airplane is travelling at a speed v < cS , 
the speed of sound.  Then sound waves emitted from the tip lead to spherical wavefronts expanding out from successive locations of airplane.  
None of the wavefronts cross each other so there is no interference between them.   (An observer standing in front of the oncoming plane will 
hear a higher frequency than one to the left.  That's the familiar Doppler effect.  But now look at the right-hand figure.  Since v > cS the plane 
moves faster than the wavefronts.   Then the expanding wavefronts do cross each other so there is constructive interference.    This leads to a 
wedge-shaped front which is a sonic boom.  

Now replace the airplane by a charged particle and the sound waves by light 
waves travelling through a material whose index of refraction is n.  The phase velocity 
of light in the material is c/n < c.   Think of the particle's electric field exciting atomic 
dipoles in the material as it moves along.   These excited dipoles radiate out the waves 
shown.   If v > c/n then waves emitted from successive locations of the particle can 
interfere constructively and the resulting "shockwave" is Cherenkov radiation.  

The lower figure shows the geometry.  In a time ∆𝑡, light emitted at point A 
travels out to point B.  By that time the particle has moved a distance v ∆𝑡 to point C. 
Dipoles at C are just beginning to emit radiation.  So the shock wavefront extends along 
the line starting at C and extending back through B, defining a cone of radiation with an 
angle 𝜃 satisfying, 

cos 𝜃 =
⁄𝑐 𝑛
𝑣

https://casper.astro.berkeley.edu/astrobaki/index.php/Cherenkov Radiation

The Cherenkov wavefronts propagate at 𝜃
relative to the direction of the particle, defining a 
cone of radiation.  (The thick arrows normal to the 
shock wavefront define the direction of emitted 
photons.)  For the Cerenkov process to occur we 
must have 𝑣 > ⁄𝑐 𝑛 and this in turn sets a lower 
limit for the energy of the charged particle.   We'll 
leave it as an exercise to show that an electron 
moving through water (n = 1.333) must have a 
minimum kinetic energy of 263 keV in order to 
emit Cerenkov radiation.   



Cherenkov radiation requires charged particles moving at close to the speed of light.   For example, in a nuclear reactor the fuel rods 
are constantly undergoing nuclear disintegrations that emit high energy electrons (𝛽 particles).   The rods are surrounded by cooling water
so the electrons generate Cherenkov radiation whose predominant visible component is blue.

Why blue?  We need to look more closely at the theory, which which is spelled 
out in, for example,  J.D. Jackson, Classical Electrodynamics. The power radiated in 
a small frequency range from 𝜔 to 𝜔 + 𝑑ω is given by

𝑑𝑃 𝜔 = 𝑣
𝑞
𝑐

+
1 −

1
𝛽+𝑛 𝜔 + 𝜔 𝑑𝜔 𝑣 >

𝑐
𝑛 𝜔

where q is the charge of the moving particle.   In general, the index of refraction n
depends on frequency so there can be frequencies where v < c/𝑛 𝜔 (no 
radiation) and frequencies where v > c/𝑛 𝜔 (radiation).   The frequency 
dependence of the emitted power leads to more radiation at higher frequencies, 
so the visible component of Cherenkov radiation is blue.

Another example is atmospheric Cherenkov radiation, caused by cosmic rays.  
These are very high energy particles that enter the upper atmosphere, break up atoms 
and generate cascades of charged particles moving at very high speeds.  These particles 
then generate Cherenkov radiation as they pass through the atmosphere.  Very high up 
the air is thin so the index of refraction n is close to 1 and the angle of the Cherenkov 
cone is small.   Closer to the earth the atmosphere is denser, n is larger so the Cerenkov 
angle is larger.   Cones from radiation generating at varying altitudes overlap as shown in 
the figure.  Atmospheric Cherenkov light was first identified in the 1940's.   More 
recently, attention has been focused on detecting very high energy gamma ray photons 
that travel in a straight line from some interesting object out in space.  These photons 
have energies exceeding 0.1 TeV and are rare but they produce charged particle cascades 
that in turn generate Cherenkov radiation.    By detecting the occasional bursts of 
Cherenkov radiation with an array of telescopes it's possible to distinguish these special 
gamma rays from the general background of atmospheric Cherenkov radiation.  https://www.mpi-

hd.mpg.de/hfm/CosmicRay/ChLight/Cherenkov.html



Cherenkov radiation has also been used to image cancer cells.  The 
tumor is injected with radioactive nuclei which decay and emit very fast 
electrons or positrons which then move through the surrounding medium 
(mostly water) and generate Cherenkov radiation.  The image on the left is 
from a mouse whose tumor was injected with radioactive 18F.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477724/

Particle physics makes extensive use of Cherenkov radiation to measure the speed of particles emitted from high energy collisions.  
The detector shown below gives the general idea.  Fast particles enter a chamber filled with some dielectric, often a gas.  The dashed lines 
indicate the Cerenkov cones around each particle beam direction.  Cherenkov photons are reflected from the mirror and captured by the 
photomultiplier.  Cherenkov photons generated by slower particles are emitted with larger angles than those shown and would not make 
it to the photomultiplier to be collected.    The device therefore functions as a threshold detector, determining if the particle velocity is 
above or below some specified value determined by the geometry and the index of refraction of the medium. 

https://link.springer.com/chapter/10.1007/978-3-030-35318-6_7


