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Motivation for the study

e Black Hole Information Paradox :
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Information “lost” upon crossing the event horizon.

Contradicts Quantum Mechanics (Unitarity).

e Possible resolution:
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Optical Scrambling of Information inside horizon.

Causes rapid thermalization leading to Hawking Radiation.
Can be tested by examining analogous systems.

Example : Chiral Spin Chain.

Phase Transition analogous to event horizon.



Chiral Spin Chain

Mean Field Theory approach to derive the quasi-particle dispersion and chirality.



Chiral Spin Chain- the Hamiltonian

e Chiral Spin Chain
1 N
H=3 37 | ~u(SrSh + SIS%) + 58 Sia X Siva)
e Interms of Pauli operators
u v it
H= Z[__ 07z07z+1 0 UTLUTL+1) g = 32 6ﬂ:bco.'rl,(}.z+l0-n+2]

Breaks time-reversal symmetry and Reflection symmetry!



Chiral Spin Chain- Map to Fermion

e Jordan- Wigner Transformation: map to spinless fermion

m<mn m<n

e Transformed Hamiltonian

10
H= E :[ u(’n(’"—l‘l 4 IL(”H-Q + Z ((T Cn+10 1.+2 T ('7L+1(4l+207z)] +ihe.

Has four fermion interaction term, not a free fermion model.



Chiral Spin Chain- Mean Field Theory

e Mean field theory can help us to convert interacting Hamiltonian into free one
= (A)B + A(B) — (A)(B) + 6A5B  §A = A— (A)

Here <...> refers to ground state expectation value, after self- consistency
regarding the particle-hole symmetry by the original Hamiltonian

Hyr = 4 Z ( —uchen 1 — %(L(nu) + H.c.  nearest neighbor and next.N.N hopping

o Fourlgr tra-nsfc?rm. Hup =Y [_— cos(k) + = sm(2k)] clex
quasi-particle in momentum space ;



Chiral Spin Chain- Chirality

e Fermi velocity is defined by the group velocity 3‘:9(:) near Fermi points €(k) =0

n . o u
kgL =<3 if |v|/2>]|u|, we have two additional % =sin" (m) ey =7~k
e The diagram of the spectrum, with unequal left and right Fermi velocity- chirality
k
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Chiral Spin Chain- Validation of MFT |

e To validate MFT, we may compare the result of MFT and numerical approach, like
MPS (matrix product state) .

e First, we may compare the phase transition point.

From the self-consistent MFT we have ground state energy (fully occupy negative
energy states)

1 1
po= lim — E(p) = — / dpE(p)
Nooo N p:%;d) 2m p:E(p)<0
5 _ _ . :
. — v/2 <u in which % po/Ov? 1S discontinuous at 92 =
0 1 2
- (—:/z + 1)/2) v/2>u



Chiral Spin Chain- Validation of MFT I

e Comparison with MPS result,
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The phase transition point shown <

by MFT is slightly smaller than =
that shown by MPS. o [
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This test demonstrates that there exists a second-order phase transition about the
point v/2 = u and shows that for /2 < u , the effect of the interactions on the
model is negligible.



Chiral Spin Chain- Validation of MFT Il

e Next we compare chirality. In MFT, the chirality x = S:-(Sia x Siy2) can be written as

Xn = —2ictenia + Hee. Thus, the result of MFT is

. 0 v/2<u
(xn) = 41m (Cpn2) = 1(1-G%) ve>w

This form indicates the scaling behavior  x»(v) = xn(u) + (v/2 — u)xq(w) x v/2 —u

with critical exponent v =1



Chiral Spin Chain- Validation of MFT IV

e Comparison with DMRG result 1@

— MEF
—8— Spin

MFT: v/2 = w and vy = 1

{x)

DMRG: v/2 ~ 1.12u, v = 0.39 0 1

2 {(b) x s
The critical points are near, and the — MF
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change of central charge indicates Iz =
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Black Hole Geometry

Emergent from low-energy effective theory of the chiral spin chain.



Connection to Black Holes - Unit Cell

e Introduce a unit cell with two sites, A and B.

(a) BH exterior, v/2 < u i BH interior, v/2 > u

gg UUUUOUU' OUOUOU

e Mean Field Hamiltonian then takes the form -

W
HMF = Z [_'U/a/jl (bn + bn—l) = Z (afla’n-l-l G blbn-l-l)] i H'C°7 u,v e ]R

n
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Connection to Black Holes - Dispersion Relation

e Dispersion relation obtained - depends on u and v.

B(p) = 9(p) £ | /()] = 5 5in (acp) & uy/2+2cos (acp)
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Note that || > |u| for p; to exist. p(’:a%’ pl:alcamos <1_(2)2/L2)2>



Connection to Black Holes - Action

e Work backwards to obtain the corresponding action integral -

8= / d* 1y (2) (z(gz + iezaaﬁ) X&) = / d1+1wi(x)i657“gﬂ>x(x)
M M

e Amazingly, this corresponds to the Dirac Fermion Action in Curved Spacetime -

SDirac = /M d1+1$|6l [%(&’Y“D;ﬂp) - Du¢7“115 - m’ﬁ‘ﬁ



Connection to Black Holes - Metric Tensor

e Importantly, we read off the metric tensor as -
2/ 2 2 9 This is the Schwarzschild metric
1—ve/u® —vi/u : : :
I =\ _p2/2  —1/u? in Gullstrand-Painleve coordinates!

- <t “Light cone tipping” in this
M spacetime.
sise




Connection to Black Holes - Quantum Chaos

e Study energy level statistics in interior region.

e Relevant Quantity -

Py =TI 815 81 ) THOE (B 8rt) 85 = By — B
0.6

e Characteristic of Quantum Chaos! = Black

Holes can potentially exhibit maximum

information scrambling!




Lyapunov Exponent A

Insights into quantum chaos of chiral spin-chain model




Basic Goal

e <r>is crude measure of chaotic behavior
— Choose to use A to quantify chaotic system rate of thermalization

e Seeking optimal scrambling

— Need to determine if chiral spin-chain is capable of agreeing with
universal bound for chaotic systems: A < 2nT

e In QM framework, A obtained using out-of-time ordered correlators
(OTOCs)



Basic Framework

e Regularized OTOC:
C(t) = (0:(t)p'/"0;(0)p"*0:(t)p' 0, (0)p""*)

e A\ extracted by fitting numerical data to semi-classical functional form at
low T:

C(t) = U(%, l,Ne”“‘) VNe 2/2



OTOC Behavior and A Fitting

e Points show numerically evaluated OTOC (a)
20
1.00
e Lines show fit to semi-classical C(t)

functional form 0.75 1

0.50 1

e Forlarge v, OTOC exhibits exponential \ |
decay — extract A 0.25 sesantiising g
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Temperature Dependence

e Using same framework, vary T in addition (b)
10°

fov
T
e Different regimes split at phase transition -
v/2=uU
e Large values of A observed forlargev, T 10~2
— extract A

e Universal bound condition: A < 2nT v



Lyapunov Experiment Results



Temperature Dependence of A in Weakly

Interacting Regime

e Regime where interactions between
different spins are weak (v/2 < u)

e Quadratic relationship between
temperature and A

e A is non-zero for systems with even

numbers of spin
o tends towards zero as N goes to infinity

1 0.00 0.02 0.04 0.06



Temperature Dependence of A in Strongly

Interacting Regime

Regime where interactions between
different spins are strong (v/2 > u)
Linear relationship between temperature
and A

Scrambling is proportional to eMT)

o Since A ~T, then scrambling in the strongly
interacting regime is exponential (which we want)

Agrees with prior SYK Model Studies!!



Coupling Dependence of A in Strongly Interacting

e We want to study the strongly interacting
regime to understand optimal scrambling

e Question: Is coupling directly proportional
to A

e A plateaus after reaching a sufficiently

coupled spin chain

o plateaus much faster than prior SYK model
0.005 0.010 0.015 studies
1 Tfo




Further Analysis of A in Strong Coupling Regime

1.5 7
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Linear fit of A:

o A =a(T-c)where cis offset from zero

Two things to note:

o  Oscillatory behavior shows boundary condition
dependence given strong coupling

o The rough linear fit for c demonstrates that offset
increases as N decreases

Motivates further studies of strongly
coupled spin chain inside black holes



Coupling and Phase Transition

The main takeaway is that
there is a quantum phase
transition going from the
weakly to strongly interacting
spin chain system

This is directly seen through
the distinctive change in
thermalisation properties of
the system



Summary and Conclusions



Summary - Methods

e Applied OTOCs to a model of a N ;
w (SESE & BYST J b =8-S % Siun
Chiral Spin-Chain Z:: [ a " ]
e Exponential decay of OTOCs
yields Lyapunov exponents 1
. * —At —Xt/2
e Exponents quantify rate of Chaos C(t) = U(z’ L;lVe )‘/Ne



Summary - Conclusions

e When v/2>u — optimal scrambling — Behaves like a Black Hole!
e Experimentally Feasible
\ Can be a proxy to study
e Other future possibilities: BH properties
o Theoretical derivation of A
o Phase transition v/2=u

o Higher dimensions
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