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KAGOME METAL

• Any metal with a kagome lattice 
geometry
⚬ trihexagonal
⚬ symmetric

⚬ periodic
• Ni₃In (trinickle indium)
• Possesses strange metal properties



TITLE 
BREAKDOWN

KAGOME METAL STRANGE METAL



STRANGE METAL

• Quasiparticles no longer 
resemble free electrons

Fermi Liquid Theory Behaviors



STRANGE METAL

• Quasiparticles no longer 
resemble free electrons

• Resistivity scales linearly with 
temperature

• Variety of temperature regimes

Behaviors

LSCO at different dopings. N. E. 
Hussey et. al. Phil. Trans. R. Soc. 
A (2011) 369, 1626–1639



STRANGE METAL

Typical resistivity behavior



BSCO at different stoichiometries,  S. Martin 
et. al. Phys. Rev. B 41, 846(R)

STRANGE METAL

Typical resistivity behavior



Hydrides, J. Guo et. al. National 
Science Review, Volume 11, Issue 12, 
December 2024, nwae149

STRANGE METAL

Typical resistivity behavior
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HOPPING

FRUSTRATION

• Lattice of Ni₃In allows for hopping 
frustration 

• Electrons are localized, creating 
partially flat band energy states 
(highly correlated system)



METHODS



MATERIAL SYNTHESIS

• Ni₃In, Ni₃Sn synthesized with I₂ 
catalyst

• Cut to 5μm crystals with Ga-ion beam

• Examined with scanning transmission 
electron microscopy

• Measurements performed at National 
High Magnetic Field Laboratory (Los 
Alamos)

Scanning electron microscope image of Ni₃In
crystals; Fig. S1 (b) from article’s supplementary 
information



PHYSICAL 
MEASUREMENTS

Cp Measurements

• Crystals sintered together

• Two-relaxation-time method (NMR)

• T₁ (long) → decay of nuclear spin 
magnetization Mz to thermal 
equilibrium value

• T₂ (short) → decay of M ⊥ B
component to 0

Other measurements

• Cryostat for ρab(T)

• Piston-type pressure cell for ρab(T, P)

• Vibrating sample magnetometer for χ(q)

• Magnetization measurements at pulsed 
field facility



SPECTROSCOPY

• Angle-Resolved Photoemission 
Spectroscopy (ARPES)

• Used to probe band structure

• Performed at Beamline 7.0.2 
(Advanced Light Source)

• Photon energy range 70-230 eV

• Energy resolution: <20 meV

• Momentum resoluঞon: <0.01 Å⁻¹

Sample

Ni₃In ARPES measurements along (a) K-M-K-

Γ and (b) M-Γ planes; Fig. S8 (a, b) from 

article’s supplementary information



CALCULATIONS

• Ab initio Density Functional Theory (DFT)

• Vienna Ab Initio Simulation Package (VASP)

• PBE Generalized Gradient Approximation 
(GGA) functional to model exchange-
correlation energy

• Reciprocal mesh: 13 x 13 x 11 subdivisions

• Wannier90 code to construct tight-binding 
Hamiltonian from Ni 3d, 4s, In 5s states

(b) Flat band Wannier wavefunction and (a) DFT 

band structure for Ni₃In; Fig. S5 (b) and Fig. S11 (a) 

from article’s supplementary information



EFFECTIVE MODEL

• Full-Potential Local-Orbital (FPLO) code used 
to construct model based on molecular orbitals

• Restricted to dominating Ni dxz, dxy atomic 
orbital contributions

• Produces four-band model

• Local magnetic susceptibility calculated 

• Reciprocal grid of 24 x 24 x 24 subdivisions

(a) Band structure (red lines), (b) flat band, and (c) 

dispersive band for four-band model of Ni₃In; Fig. S6 

(a-c) from article’s supplementary information



RESULTS



RESISTIVITY

• Resistivity (𝜌) exhibits a linear like dependence 

on T below 100K, when the expected 

dependence is T2

• Only at T < 1.5K ≡ TFL, does the system show 

a response of 𝜌(T) ∝ T2 (inset)

• This is indicative of Fermi-Liquid behavior.
• The coefficient of T2 for Ni₃In (0.25 𝜇Ω cm K-2) 

is orders of magnitude larger than the upper 
bound estimated for Ni₃Sn (1x10-4 𝜇Ω cm K-2)



HEAT CAPACITY

• At low T, a slight upturn is observed, deviating from the 

expected form 𝛾 + 𝛽𝑇ଶ (where 𝛾 is the Sommerfield

coefficient and 𝛽𝑇ଶ is the phonon contribution

• For Ni₃In, 𝛾 ≈ 51.6 mJ K-2 mol-1, a roughly fivefold increase 

from 9 mJ K-2 mol-1 for Ni₃Sn. This is an indication of Heavy 

Fermion phenomena.

• We can derive a Density of States (DOS) from 𝛾. From the 𝛾

values of Ni₃In and Ni₃Sn, we find D = 44 eV-1 and 7.6 eV-1 

per unit cell respectively (inset)

• This result does not agree with the DOS estimated from 

DFT. We see a nearly threefold increase for Ni₃In (14 eV-1)  

and only a 50% increase for Ni₃Sn (4.9 eV-1)



TUNING

• NFL behavior is suppressed as 

the magnetic field increases, and 

the FL behavior is promoted at 

low temperatures.

• Heat capacity measurements 

also show a suppression of NFL 

features with increasing field 

(inset).

• The evolution of the metallic 

state in Ni₃In can be seen most 
clearly in the map of 𝛼(𝑇, 𝐻)

Sub-Linear

Fermi Liquid



INTERPRETING
THE RESULTS



INTERPRETING THE RESULTS: EXPERIMENTAL

• The Kadowaki-Woods ratio is 

three orders of magnitude larger 
than those of elemental transition 

metals

• Closer to heavy fermion metals 

and correlated oxides
• Indicates enhanced correlation in 

the electronic states of Ni₃In



THE DFT FLAT BAND

• From the orbital decomposition of the electronic 

structure, flat band at the Fermi Level due to the 

Ni dxz-dyz states

• Band structure has features of the ideal Kagome 

lattice like symmetry-protected band crossing at 

near -0.6 eV, with a varying degree of 

dependence on kz

• Results from the nature of the underlying d-orbitalBrillouin Zone for the Kagome Lattice





TIGHT BINDING AND CONSEQUENCES OF THE 

FLAT BAND

• The DFT analysis motivates considering Wannier basis 

states w/.  dxz and dyz orbitals (which dominate at the 

Fermi level)

• Magnetic susceptibility calculation reveals Curie-Weiss 

behavior (for high T)

• Indicates pre-formation of local magnetic moments, 

suggestive of emergent heavy fermion behavior

Susceptibility vs Temperature
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CITATION ANALYSIS

• Paper was published in January 
2024

• Has been cited by 23 papers so 
far
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CITATION ANALYSIS

Groups have begun studying kagome metals 
for correlated electron phenomena



QUESTIONS?


