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BACKGROUND

Antimatter

- Quantum field theory
predicts matter and
antimatter.

https://newatlas.com/physics/what-is-antimatter-

https://journals.aps.org/pri/abstract/10.1103/PhysRevl ett.1

CPT Symmetry

Physical laws are invariant
under clierGe confUGETGH
.}, parity inversion (P),
and time-reversal (T).
Testing CPT tests quantum
field theory
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SUMMARY =~

Mgrowave Sextupole

Cusp trap avity Magnet H Det.

Ultimate goal: microwave

spectroscopy of antihydrogen

Q 3D track
ng? detector




SUMMARY

3D track

detector
7 .

1. Antiprotons from CERN antiproton decelerator

Guiding coils

2. Radioactive Sodium-22 positron source
3. Cusp trap consists of superconducting

anti-Helmholtz coil and stack of multiple ring

electrodes (MRE)

4. Scintillators detect antiproton annihilations 9
ng— detector




SUMMARY

1. Inject and cool positrons

2. (:‘.ompress positrons using rotating 300

electric field 200 | | (c).
1 2 TN

3. Compressed positrons moved to nested R L _ 7‘—- g

trap : : Z 0 Z 6

4. Place antiprotons into nested trap - afq, ‘3/ P ‘

i. neutral antihydrogen forms, then i i ,__/>_{ /5 s
escapes trap Rty L o ﬂlt‘slcd | || 2 FIT —
: : ; ’ . . trap | ‘
5. Highly excited antihydrogen are field- 300 —
ionized Position (inside cusp trap)

i. antiprotons accumulate at field-
ionization trap (FIT)

6. FIT-stored antiprotons periodically
released






PREVIOUS WORK

letters to nature

Production and detection of
cold antihydrogen atoms

Methodology: Penning trap - uses magnetic
fields and electrodes to trap particles inside a
small region.

Successful trapping, hot mixing had 4
times lower annihilation rate

Trapping mechanism only works on
ground state atoms
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PREVIOUS WORK ,

VOLUME 89, NUMBER 21 PHYSICAL REVIEW LETTERS 18 NOVEMBER 2002

Background-Free Observation of Cold Antihydrogen
with Field-lonization Analysis of Its States

G. Gabrielse,"* N.S. Bowden,' P. Oxley,' A. Speck,' C. H. Storry,! J.N. Tan,' M. Wessels,! D. Grzonka,” W. Oelert,’
G. Schepers,” T. Sefzick,” J. Walz,* H. Pitner,* T.W. Hiinsch,** and E. A. Hessels®

(ATRAP Collaboration)

Goal: synthesize anti H atoms cold enough to be
trapped for laser spectroscopy

Methodology: Nested penning trap

Very high efficiency, 11% of

antiprotons form anti-hydrogen

Still requires deexcitation of the highly
magnetized, highly excited states

observed

rotatable

seeFig.2~ 27
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Field 1onization trap populations

e The following figures show the counts (synchronized to FIT release) from 3-d track
detector during mixing of antiprotons.

e Peak is seen in case of positrons in nested trap. Background is due to residual gas
e |f positrons are r-f heated the peak is reduced

20 with positrons (a) 20 (b)

without positrons
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H formation rate (arb. units)

Variation in number of ionized H
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120

Experiment started with 3ES
antiprotons and 3E6 positrons
in nested trap

e Number decrease is
hypothesized due to
separation of positron and
antiproton clouds in nested
trap
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Variation in number of ionized ﬁ
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» Rydberg anti-Hydrogen
formation efficiency of 2%
which increases to 7% by
reducing the initial population of
antiproton.

e Smaller antiproton populations
implies earlier peaking of anti-
Hydrogen synthesis rate and
shorter synthesis periods
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Antiproton annihilation location

e Most annihilation occurs
within the nested trap due
to residual gas

e Broadening of the peak is
due to axial separation of
anti-protons and positrons
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Estimation of Q-number of H

e Number of Field-ionized w - 80F
antihydrogen atoms is £ & -
determined by number of S s 0F o + e +
counts detected by 3-d IT S g0 E p o e
detector compensated for 3 3 C : + P
isotropic angular distribution in g 50 & ,/ F
411. Observation is consistent C n P e 7
with n ~ 45,50. .= 40 [ P
5 OF + ., )
 The field ionization simulations E 20 & T —= Rz
were conducted and are g - Pt nZ3
shown.The n = 55 states are > 10 ¢ £ Fr 5 o Dxp data
ionized before they reach the N N AR TR

FIT. 2300 -200 -100 O 100 200 300 400
Voltage applied to D4 and D5 [V]
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CRITICAL ANALYSIS

Strenqgths

@ Cusp trap is new and effective!
@ Successfully made antihydrogen in cusp trap
® Makes use of existing CERN facilities
@ First step toward microwave spectroscopy of antihydrogen
| @ Strong justification of presented results and conclusions with suitable

control experiments
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CRITICAL ANALYSIS

Weaknhesses/Criticisms

® Low antihydrogen synthesis efficiency

@ Intermediate measurement techniques not given

® Minimal discussion of positron and antiproton density effect on efficiency

@ Simulation results mentioned once but never discussed in context of experimental results
@ Didn’t measure beam polarization

@ Didn’t detect low-n states

® Didn't say whether planned measurement was feasible

® Didn't utilize position resolution

® Too much discussion of future experiment

® Lack of supplementary material 19



/ . V \,
\

\

F \

i { %' | \ \/ / / / /,f /f
\ W \ \ \ A / /// L

/




CITATIONS BY FIELD AND YEAR

# of Citations per Year @ Relevance of paper slowly waning
since 2015.
® Relevant to:
O Fundamental/particle physics
O Optics
O Chemistry
OA few others
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PROGRESS

Testing CPT Symmetry & Weak Equivalence Principle

% X at A source of antihydrogen for in-flight hyperfine spectrosco
® Production of Antihydrogen is R e
Figure 1: Schematic view of our experimental apparatus.
first step to antimatter
measurements
OHyperfine spectroscopy
B Image: Exact experiment
suggested in our paper'’s

Introduction




PROGRESS

Testing CPT Symmetry & Weak Equivalence Principle

@® Production of Antihydrogen is
first step to antimatter

measurements

O1S-2S spectroscopy
B Uses trapped antihydrogen

Observation of the 1S-2S transition in trapped
antihydrogen

M. Ahmadi', B. X. R. Alves?, C. J. Baker®, W, Bertsche*?, E. Butler®, A. Capra’, C. Carruth®, C. L. ( esar’, M. Charlton”, S. Cohen

R. Collister”, S. Eriksson®, A. Evans'!, N. Evetts'?, ]. Fajans®, T. Friesen’, M. C. Fujiwara’, D. R. Gill’, A. Gutierrez", J. S. Hangst?,

W.N. Hardy'*, M. E. Hayden™, C. A. Isaac’, A. Ishida®, M. A.Johnson™”, S. A. Jones®, S. Jonsell'®, L. Kurchaninov’, N. \le.\cnl.
M. Mathers™, D. Maxwell”, J. T. K. McKenna’, S. Menary", J. M. Michan”"®, T. Momose'~, . J. Munich™, P. Nolan', K. Olchanski’,
A. Olin”*", P. Pusa’, C. ©@. Rasmussen, F. Robicheaux™, R. L. Sacramento”, M. Sameed”, E. Sarid™, D. M. Silveira’, S. Stracka™,

G. Stutter?, C. So'', T. D. Tharp®, J. E. Thompson", R. I. Thompson'!, D. P. van der Werf>** & J. S. Wurtele®
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PROGRESS

Testing CPT Symmetry & Weak Equivalence Principle

@® Production of Antihydrogen is
first step to antimatter An experimental limit on the charge

LRl R of antihydrogen

C. Amole', M.D. AshkezariZ, M. Baquero—Ruiz3, W. Bertsche®®, E. Butler®’, A. Capraw, C.L Cesar®, M. Charlton®,
S. Eriksson®, J. Fajans>'°, T. Friesen'!, M.C. Fujiwara'?, D.R. Gill'2, A. Gutierrez', J.S. Hangst”", W.N. Hardy'>",
M.E. Hayden? C.A. Isaac’, S. Jonsell'®, L. Kurchaninov'?, A. Little?, N. Madsen®, J.TK. McKenna'/, S. Menary',

S.C. Napoli®, P. Nolan, K. Olchanski'?, A. Olin'2, A. Povilus3, P. Pusa, C.@. Rasmussen', F. Robicheaux®,

E. Sarid'®, D.M. Silveira®, C. So3, T.D. Tharp% Rl Thompson”, D.P. van der Werf®, Z. Vendeiro?, J.S. Wurtele3'©,

O Antihydrogen charge Al Zhmoginov31® & A, Charman?
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PROGRESS

Testing CPT Symmetry & Weak Equivalence Principle

@ Production of Antihydrogen is
first step to antimatter
measurements
OHyperfine spectroscopy
0O1S-2S spectroscopy

O Antihydrogen charge
O Antihydrogen mass
M Freefall is observed

B Mass measurement ongoing

- observe

No viol
Wea

try or

et rogen.
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THANK YOU

QUESTIONS?
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