Lecture II Recapi Little group G_k of a point \vec{k} in the Brillouin zone (BZ) $G > G_k = \{ \{ \{ \{ \{ \{ \} \} \} \} \mid \{ \{ \} \} \} \}$ is mod $\vec{T} \}$ is given by $f_{i} = \{ \{ \{ \{ \} \} \} \} \} = \{ \{ \{ \} \} \}$ if $g_{k} \in G_{k}$ then $U_{g_{k}} | \Psi_{nk} > = \sum_{m} | \Psi_{n\overline{g}k} > B_{mn}^{k}(g_{k})$ $\overline{g} | \overline{g} | \overline{g} > 100, nk-1$ $= \sum | \mathcal{L}_{k} > \mathcal{B}_{m}^{k}(g_{k})$ { B^h(3_k) | g_k G G K forms a representation of G k under which $\{|\Psi_{nk}\rangle\}$ transform $\{B_{mq}(g)=\langle \Psi_{mgk}|\Psi_{g}|\Psi_{nk}\rangle$

Example: Space group P432 Primitive ectahedral group Bravais lattice $\begin{cases} \hat{e}_1 = 0 \hat{x} \\ \hat{e}_2 = 0 \hat{y} \\ \hat{e}_3 = 0 \hat{z} \end{cases}$ $G = \langle \hat{e}_{1}, \hat{e}_{1}, \hat{e}_{3} \rangle C_{42}, C_{3}, III \rangle$ $Z = \{0, 0, \frac{1}{2}\} k_{3} R = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ $F = \{0, 0, 0, -\frac{1}{2}\}$ K_{1} $F = \{0, 0, 0, -\frac{1}{2}\}$ $\int_{a} = \frac{2\pi}{a} \hat{x}$ $b_j = \frac{2\pi}{q} \frac{2}{2}$ primitive $b_j = \frac{2\pi}{q} \frac{2}{2}$ by the vectors $\{\overline{g}|\overline{d}\} \in G = \overline{0}$ OF point K=0

the little group of T is the whole space group => Gr = G (2) R point $\vec{k} = \frac{1}{2}(\vec{b}_1 + \vec{b}_2 + \vec{b}_3)$ C42 x-7ŷ ŷ-7x z-7ĉ 3 Zpoint k= 2br $G_{z} = \langle T, C_{47}, C_{2N} \rangle = P422$

AIE	Wectool on csyst.ehu.es "High symmetry" G k + 8k < Gk & 8k #0 pount
T ₂	ations of Little Groups.
represente	
· · · · · · · · · · · · · · · · · · ·	1 VG& for every k -> little groups are isomorphic to space groups
Two cases	T < G& for every k -> little groups are isomorphic to space growps O G& Symmorphic @ G& is nonsymmorphic

.

() Deasy Gh symmorphic Gag= {Elf} [] [] where $\overline{g}_{k} \in G_{k} = \overline{G}_{k}$ "little cogramp" of \mathcal{R}_{k} is a representative of G_{k} "little group" Her $Q_k(g_k) = Q_k(\{E|\bar{e}\})Q_k(\{\bar{g}_k|0\})$ $= \overline{e^{k}} \cdot \overline{e}_{k} (\overline{19}, 10)$ { Rk (85k103) 19k GL \$ 15 a representation of Gk

. .	given any rep η of \overline{G}_{k} $\neg P_{k}(\overline{S}_{k} \overline{t}) = \overline{P}_{k}(\overline{S}_{k} \overline{t}) = \overline{P}_{k}(\overline{S}_{k})$ is a rep of \overline{G}_{k}
. 	For symmorphic G_k , representations are determined from reps of the point group $\overline{G}_k = G_k/T$ (little cogram)
(2) G	is nonsymmorphic is more interesting $G_k = \bigcup T\{\overline{9}, \overline{d};\}$ at least one of the \overline{d}_j is on $G_k = \bigcup T\{\overline{9}, \overline{d};\}$ at least one of the \overline{d}_j is on fraction of a Bravais lattice translation

τ	his means that there exist \$ \$ [], [], \$ \$, \$ \$,], \$
. .	$\{\bar{g}_{1} \bar{d}_{1}\}\{\bar{g}_{1} \bar{d}_{2}\} = \{\bar{g}_{1}\bar{g}_{2} \bar{d}_{1}+\bar{g}_{1}\bar{d}_{2}\} = \{E \bar{t}_{12}\}\{\bar{g}_{1} \bar{d}_{2}\}$ = $\bar{t}_{12}\neq O$
· · · · · · · · · ·	$\mathbf{r} \hat{\mathbf{t}}_{12} \neq \mathbf{O}$
 	Exi twofold screw FC22 1223
· ·	$\{C_{23} _{12}^{2}\}\{C_{23} _{12}^{2}\}=\{E _{12}^{2}\}$
	this mass in any representation $P_k(\overline{s}_1 d_1)P_k(\overline{s}_2 d_2) = P_k(\overline{s} = 1, 1)P_k(\overline{s}_1 d_3)$

 $= e^{-ik \cdot t_{12}} \mathcal{P}_{k}(\{S_{3}, [d_{3}]\})$ but in representations of Gk $\eta(\overline{9}_1)\eta(\overline{9}_1)=\eta(\overline{9}_1)$ we can interpret this in two equivalent ways (A) Generalize our idea of representations $P(\bar{g}_{i})P_{i}(\bar{g}_{i}) = e^{C(\bar{g}_{i},\bar{g}_{i})}P_{i}(\bar{g}_{i}\bar{g}_{i})$ $C(9_{1}, 9_{1}) + C(9_{1}, 9_{2}) - C(9_{1}, 9_{3}) + C(9_{1}, 9_{3}) - C(9_{1}, 9_{3}) + C(9_{1}, 9_{3})$ $P_{k}(9_{1}) P_{k}(9_{3})$

	- projective representation
	representations of nonsymmorphic GL are projective representations of GL w/c given by Eikitin
<td>Alternaturely: Gh, and extend to by Seikit is Tj and look for ordinary representations of this extension</td>	Alternaturely: Gh, and extend to by Seikit is Tj and look for ordinary representations of this extension
Example	$\vec{p} = \alpha_1 \vec{X} + b_1 \vec{Y}$
· · · · · · · · · · ·	$\vec{e}_s = c\hat{z}$ $G' = \langle T, \{C_{22} \frac{1}{2}\hat{e}_s\} \rangle$

T = (0,0,0)	$Z = (0, 0, \frac{1}{2})$
Gr=Gz=GH	e whole space group
Irreps of GT	$e_{\Gamma}(\{E i\}) = e_{i} = 1$
	$\left[\left\{C_{23} \mid \frac{1}{2} \vec{e}_{3}\right\}^{2} = P_{\Gamma}\left(\left\{E \mid \vec{e}_{3}\right\}\right) = 1$
. .	-) Even when GT 15 nonsymmerphic, its irreps are still determined from irreps of GT
- Γ Γ[1 Γ]1	$\frac{2_{1}}{1} \frac{1}{1}$ two inteps =1 1

 $Q_{z}(\{E|\widehat{t}\}) = \widehat{e}^{i} \widehat{t} \widehat{b}_{i} \widehat{t} = \widehat{e}^{i} \widehat{t}_{j}$ at the Z point: $\vec{k} = \vec{z} \vec{b}_{3}$ $\vec{f} = t_1 \vec{e}_1 + t_2 \vec{e}_3 + t_2 \vec{e}_3$ $P_{z}(EC_{zz}|_{i}^{2}\tilde{e}_{3})^{2} = P_{z}(E|_{i}^{2}\tilde{e}_{3}) = \tilde{e}^{i}=-1$ $P_2(\{C_{21}|_{i}^{t}e_{s}\}) = \pm i$ $\frac{E}{Z_1} \frac{1}{1} + i \frac{1}{e^{iit_3}}$ $\frac{1}{Z_1} \frac{1}{1} - i \frac{1}{e^{iit_3}}$ For electrons this means from Schu's lemana, all

ergonstates $|\Psi_{nF}\rangle$ transform as Γ_{1} $U_{\{C_{2}\}}|_{\dot{e}_{3}}|\Psi_{nF}\rangle = \pm |\Psi_{nF}\rangle$ $\frac{1}{\sqrt{\frac{2}{100}}} = \frac{1}{\sqrt{\frac{2}{100}}} = \frac{1}{\sqrt{$ -File - Eire 3 -File - Eire 3 -File - Eire 3 - Eire 3 - Eire 3

 $k_{\Lambda} = x \overline{b}_{1}$ $\Lambda = (0,0,x)$ x-70 ハ-7 T x-2 パーフ T x->-ド V-75 Gn=Gr~Gz~ the full space group $e_{\Lambda}(\{E|i\}) = e^{-2\pi i x t_3}$ $P_{\Lambda}(\{C_{22}|\{e_{3}\}\})^{2} = P_{\Lambda}(\{E|\vec{e}_{3}\}) = e^{-2\pi i \chi}$

 $P_{\Lambda}(\{C_{12}|_{t}^{t}e_{s}\}) = \pm \tilde{e}^{i\bar{n}x}$ $\frac{|E|^{2}}{|F_{1}|^{2}} \frac{1}{1} \frac{1}{1}$ $\frac{|E|^{2}}{|F_{2}|^{2}} \frac{1}{|I|^{2}} \frac{1}{|I|^{2}}$ $\frac{E}{\Lambda_{1}} \frac{2}{1 + \overline{e}^{i\overline{n}x}} \frac{1}{e^{2i\overline{n}x}} \frac{1}{e^{2i$ XI $\frac{|E|2_1}{Z_1|1|+i|e^{iint_3}}$ $\frac{|1|+i|e^{iint_3}}{Z_1|1|-i|e^{iint_3}}$ Mar Zz Compatibility relations; $G_k \ge G_{k+\delta k}$ S I II II then as Sk-JO Schurslemma

if I have states transforming in an irrep Ri of Gi then they better connect to states transforming $H (\mathcal{E}_{\eta} \circ)$ $\left\langle O \in \mathcal{E}_{u} \right\rangle$ $e_k \downarrow G_{k+\delta k \rightarrow 0} = \bigoplus_{i=1}^{m} \eta_i$ x-1 { ハーフア $\sqrt{1}$ 91 X-10 んった $\lambda_n \rightarrow \tau_1$ - Jandsin PZ, come in x->-12 ハーフモー Connected groups of two Az-JZz

•	•	• •	• •	•	•	•	• •	-))	•	ſ ∕∖	J)))	S S	Y	M.	n M	Øl	ام ام	זע י	ر ر	•	S	00	7 C	e	1 C	3N SN	ہ م	7.	ŀ	\ Q \	ر	•	S	ł	l	le	・ ・ ン	l L	1 1	י פ	~0	Vg	ι	r L	• •
•	•		• •	•	•	•		•	•	÷(- 20	~	,d	. (D)	2	Ń		S	• •			 			•	0		•	•		•	•	•	•	•		•	•	0	•	• •	•	•	•	• •
																		()	•	Ē																											
		•	• •				• •											Ň		•	•		• •															• •					• •				• •
		•	•																•		-																										• •
	•	•	• •				• •											•	•		•											•						• •					• •				• •
													•					•	•		-											•											• •				•
	•	•	• •				• •											•	•	•	•	•	• •									•						• •					•				•
							• •						•					•				•	• •				•																•				
		•	• •				• •							•					•				• •									•						• •					•				• •
																		•				•	• •																								
		•					• •												•		•		• •															• •									
		•																					• •															• •									
		•	• •																				• •																								
		•	• •																•	•			• •															• •									