Lecture 2 Lessons va far O Bloch states { Man) ~ " W/ momentum k transform in representations of GL $Q_k:G_k\rightarrow O(N)$ $P_{k}(\{E | E\}) = e^{-kT_{k}E} \text{Id}$ 2 Schw's lonnai All states that trous form in eguen 11 ve et ce ve conservate alors that
3) Schur's lamme, Wer bonds cross the crossy cant be
9 apped by Singll perturbations of the bonds transform

in different irreps of the little group $k_t = t k$ $te \lbrack e, 0 \rbrack$ Gkt - set et spacegroup dannt that leave η - meps of $\begin{picture}(120,15) \put(0,0){\line(1,0){15}} \put(15,0){\line(1,0){15}} \put(15,0){\line($ $G_{\ell_{\perp}}$ $H = (\frac{H_{77}}{4} \sqrt{\frac{H_{77}}{4}})^{-0}$ of $\gamma \neq \gamma$ $\left(\sqrt{\frac{1}{2}\eta_1}\right)$ $H_{\eta\eta_2}$

4 Screw (and glide) symmetries require noncernantle Two last ingredients: 1 Sp.n 1 Ture-reversal symmetry Convay et al,

↑ generated generated
by $\vec{\rho}$ of L=rep $[H_{electron}, u_g] = 0 \Rightarrow [H_{electron}, u_g^{cond}]$ Ifve have SOC, weneed to nor reps of SUP) to describe spin rotations $\mathcal{L}\left(\mathfrak{h}\right)$ = $9e$ SU(2) \hat{A} \hat{n} - a vector on the sphere δ^2 θ e [-2r, 2 π) 2) to describe spir rota
 ϵ SU(2)
 θ = $\frac{1}{2}$
 θ = $\frac{1}{2}$
 θ = $\frac{1}{2}$

 $P_{l_1}((\hat{n}_1 2\pi)) = P_{l_2}((\hat{n}_1 - 2\pi)) \leq -O_6$ $Q_{l}(\hat{\theta},\hat{\theta})=Q_{\theta}$ $(\hat{n}, \theta = \pm 2\pi) \equiv \mathcal{E} \in \mathcal{L}(\mathcal{E})$ We can encode this in our study of space graps by
extendry $E(3)$ by E s.t. E^2 = E $Q(E)$ = $Id - QeZ$ integer spin

 $Q(E) = -Id$ $\int e \, \gamma + \gamma$ $Ex.$ point group $D_{2} < SO(3) = \{E, C_{ex}, C_{2y}, C_{2z}\} = ZZZ$ C_2 ² = E, C_2 ; C_2 j = C_2 ; Vij In SU(2) in the defining representation $R_{i}(C_{i}) = e^{-i\pi G_{i}}/2 = -i\sigma_{i}$ $P_{i}(c_{2i})^{2} = (-i\sigma_{i})^{2} = -\sigma_{0} = P_{i}(E)$ $P_{i_{\xi}}(C_{i_{j}})P_{i_{\xi}}(C_{i_{j}})=P_{i_{\xi}}(\overline{E})P_{i_{\xi}}(C_{i_{j}})P_{i_{\xi}}(C_{i_{j}})$

double group 222° $Q = \{E_j C_{1x}, C_{2y}, C_{2z}, E, \overline{E} C_{2x}, \overline{E} C_{2y}, \overline{E} C_{1z}\}$ C_{2i} = \widetilde{E} $C_{\mathbf{z}}$, $C_{\mathbf{z}}$ = $E C_{\mathbf{z}}$, $C_{\mathbf{z}}$ $SO(3)$ is $SU(2)$
 SEE D_{2} 2 $\left\{\frac{Q}{E_{1}E}\right\}$ $\frac{1}{50(5)}$ $\frac{1}{5}$ $\frac{1}{50(5)}$

For rotations: double point graps ave subgroups of $Spin(5)$ \leq $SO(5)$ For reflecters ne reed an extension of $O(5)$
 $\overbrace{(P_{1n}(3))}^{2}$ $\overbrace{E,F}^{3}$ \overbrace{S}^{3} T_{w0} possibilities $P_{w3} = I^2 = \begin{cases} E & P_{w}(3) \\ E & P_{w}(3) \end{cases}$

physical Spin-k is like ^a magnetic moment - > should transform like ^a magnetic moment under I t ranstorm like a $f(x)$ and $f(x)$ $P_{1n}(3) = SU(2) \times \{E, I\} = \{9, 8I \mid q6SU(2)\}$ $L_g = 9L$ For spin { particles, w/ SOC, Hamiltoniens are Symmetric under (double) space groups $T< G < R^3 \rtimes P_{11}(3)$

 E_{x} , $Q = \{E_{1}C_{1x}, C_{1y}, C_{2z}, E_{1} \overline{E}C_{2x}, \overline{E}C_{2y}, \overline{E}C_{1z}\}$ $C_{\mathcal{U}}^{\mathcal{L}}$ = $\overline{\epsilon}$ onlinery of Stay reps $C_{\mathbf{z}}$; $C_{\mathbf{z}}$; $EC_{\mathbf{z}}$; $C_{\mathbf{z}}$; of a double group $\eta(E) = \frac{1}{4}\eta(E)$ (if y 1s as 11160 Correspond de 5 conjugacy chartes. $\sum \sum$ E C_{2x} , EC_{2x}

 $\{C_{2y}, \overline{E}C_{2y}\}$ $-7,5$ meps $\frac{1}{\sqrt{2}}$ $\{C_{23}, \overline{C}C_{13}\}$ IE E Cu Cuy CIZ $\begin{array}{c|ccccc}\n\mathbf{a} & 1 & -1 & -1 \\
\hline\n\mathbf{b}_1 & 1 & -1 & -1 \\
\hline\n\mathbf{b}_2 & 1 & 1 & -1 \\
\hline\n\mathbf{c}_3 & 2 & 0 & 0\n\end{array}$ 2d mep intersted $Q_{\overline{I_{s}}(\overline{L})^2-\sigma_{0}}$ $P_{r_{s}}(C_{ul}) = -10^{-1}$

Electrons W/ SOC can only transform in irreps) 1 Time-reversed symmetry (TRS) on Hilbert space TRS $T\vec{x}$ $T=\vec{x}$ $T\delta T^{-1} = -\delta$ This means T cannot be untary

 Lx_i, p_i] = $\forall k S_i$ j but $TLX_{i,l}[\mathbf{0}]T^{-1} = LTX_{i}T^{l}T[\mathbf{0}]T^{-l} = LX_{i,l}[\mathbf{0}]$ $=-ik\delta_{ij}=\mathcal{T}(ik\delta_{ij})T^{-1}$ Resolution T most be artimitary; $\textcircled{1} \left(\textcircled{1} W \right) + \beta |W \right) = o^{\#} T |W \rangle + \beta^{\#} |W \rangle$ $\textcircled{1}(CTV|Tw) = \textcircled{1}(V) = \textcircled{1}(V|w)$ $(\langle \text{Tw} | \cdot (\text{Tw})^{\text{T}} = | \text{Tw} \rangle^{\text{+}}$

To see how artivitaires are represented, intreduce a $B_{ij}(\tau)=\langle V_i | \tau v_j \rangle$ For any state $|v> \leq a_1 |v_1>$ $T_v>=T_{a_i}/r_i$ $=$ $\sum a_i^*$ $\left|\top_{V_i}\right>$

 $=\sum_{i,j}q_i^{\#}|V_j\rangle\langle V_j|\text{TV}_i\rangle$ $= \sum_{i} |V_{i}\rangle B_{i}(\tau)q_{i}^{\#}$ We can say that Is represented by $B_{ij}(\tau)$ le complex conjugation on scalars Note BTT) is a unitery matrix $(B^+(T)B^+))_{ik} = \frac{1}{3} \langle Tv_i|V_j\rangle \langle V_j|Tv_k\rangle$

 $=\langle T_{V_{i}}|T_{V_{i}}\rangle$
= $\langle V_{j}|V_{i}\rangle$ = $\langle S_{i}\rangle$ Ex: Spin - 2 particles $\begin{array}{c} \begin{array}{c} \text{ }\\ \text{ }\\ \text{ }\\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{ }\\ \text{ }\\ \text{ }\\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{ }\\ \text{ }\\ \text{ }\\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{ }\\ \text{ }\\ \text{ }\\ \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{ }\\ \text{ }\\ \text{ }\\ \end{array} \end{array} \begin{array}{c} \begin{array}{c$ $T|\downarrow> = |\uparrow>$ $B_{\sigma\sigma}(\tau) = \langle \sigma | \tau\sigma' \rangle = \begin{pmatrix} 0 & 1 \\ -I & 0 \end{pmatrix} = i\sigma$

"T is represented by $\sigma_{y} \chi''$ Let T be artivistary then T is a curtage operator $T^{2}(d|v)+\beta|w\rangle = cT^{2}|v\rangle + \beta T^{2}|w\rangle$ $\left\langle T^{2}v|T^{2}w\right\rangle =\left\langle Tw|Tv\right\rangle \leq\left\langle v|w\right\rangle$ BT^2 = B(T) KBT^2 = B(T) K^* B hysically, we want $B(T^2) = \lambda$ Id

 $B*(t) = \lambda I d$ $B(T) = \lambda B^{T}(T)$ $\stackrel{\scriptscriptstyle\smile}{\scriptscriptstyle\smile}$ $\lambda (B(T))^T$ $\frac{1}{2}$ $\lambda^2(B^T(T))^T$ = $\lambda^2B(T)$ $\chi^2 = 1$ $B(T^{2})= \pm Td$ $s_{p,n}$ -statistics theorem : λ = +1 for integer spins (Single-valued reps) λ = -1 for half integer spins

 T^2 = \overline{E} $\langle v|Tw \rangle^{\frac{2}{\omega}} \langle T^{\dagger}v|w \rangle$ $= \langle T^{\dagger}w|T^{\dagger}\rangle v\rangle$ $<$ u $|T|$ w $>$ $\leq \frac{1}{\sqrt{|\mathbf{w}|}}$ $=$ \pm \lt W Tr $\langle T^{\dagger}v|w\rangle=\pm\langle w|Tv\rangle$ To It has a complex conjugation soudative

 $\ket{\psi_{n\,k+s\,k}}$ = $\widehat{\mathcal{A}_{n}(sk)}$ $(x,y)=\sqrt{1+(1-x)^2}$