Lecture 13 Recap : Ospin: electrons have spin? 27 rotation $E \in SU(2)$ is different from the identity E 2 - > led us to Introduce double space groups e groups
G^d<R³×1P₁₁ $G^{d} < R^{3} \rtimes P_{11} (3)$ $P_{1n}(3)$: $SU(c) \times \{E, I\}$ [↑] seatral rotations Double group irreps esatisfy inversion $P(E) = \pm P(E)$ + - Forspondess particles

- > ordinary space/point gue répliquent for spin $\frac{1}{2}$ w/soc ② TRS represented as anAntmitoryegerator $T = B(T)$ -Id for spinless T^2 = \overline{E} => B(T)B^{*} (T) = { + Id for spinless \Rightarrow BCT Recall as group elements Tg = gT For all g & G for spacegroup 6

 $6.5 \rightarrow 0.00$ be as irrep of 6 A T can be represented on the Hilbert space V $B(T)\chi_{Q(S)}=P(S)B(T)\chi$ $\circledA\sqrt{BT^2(9)BT^2}=\allowbreak\mathcal{C}^*(9)\sqrt{1-\left(\frac{1}{2}\right)^2}$ $B(f) B^*(T) = P(E)$ Its not gluays possible to sortisfy (b) and 1 Example: point grap $2^d = \{E, C_{23}, E, E, C_{23}\}$

 $F = E 2 2^{\circ}E C_{22}$
 $F = \frac{1}{\sqrt{2}} \left(\frac{1}{1} - \frac{1}{1} -$ For T_1 and T_2 , we look for $B_{12}(T)Z = P_{r_1/r_2}(T)$ $B(T)B(T)^{*}=1$ $B(T)P(C_{23})^{\dagger} = P(C_{23})B(T)$ $-)8T=1$ $\mathcal{X} = (T)$

 But for F_3 $B(T) P_{5}(C_{22})$ $r^* = \rho(c_{2z})\beta(T)$ **T** $B(T)(+i) = (i) B(T) \times No$ solution $P_{\overline{t_{s}}}^{(c_{2})}(t_{s}) = f_{\overline{t_{s}}}^{(c_{2})}(t_{s})$ To make a time-reversal invariant representation, we **W** $P_{\overline{t_{s}}} \downarrow P_{\overline{t_{s}}}$
and the reversal invariant representation in
need to add to and its conjugate $\overline{t_{s}}$. $\overline{t_{u}}$ $P\frac{t}{\sqrt{6}}$ of $P\frac{t}{\sqrt{6}}$ of $P\frac{t}{\sqrt{6}}$ or $P\frac{dt}{\sqrt{6}}$ or $P\frac{dt}{\sqrt{6}}$

 $P_{\vec{r}_6\vec{r}_4}(c_{22}) = {10 \choose 0} = -102$ $P_{\overline{r}_{a}}(\overline{r}) = \frac{1}{(0\gamma K)^{n-1}} e^{-\frac{1}{2} \int_{0}^{1} \int_{0}^{r} \int$ Tu is arepresentation "representative" w/ both untary & antiunitor elements - corepresentations FOTA is a reducible representation, but W/TRS La Bilbao cryst. Server (BCS)

Concretely: $U_{\hat{t}}|Y_{nk}\rangle = e^{-ik\cdot\hat{t}}|Y_{nk}\rangle$ $u(t|\psi_{ik}) = Tu_{\epsilon}|\psi_{ik}\rangle = Te^{-k+\epsilon}|\psi_{ik}\rangle$
= $e^{+ik+\epsilon}(T|\psi_{ik}\rangle)$ $F - k \equiv k \mod \mathsf{T}$ then $P_k \approx P_k$ => TRS IS in the little group of t this occurs when
 $k = \left\{\frac{1}{2}(\sum_{i=1}^{3} n_i b_i)\right\}$ $n_i = 0,1$ $\left\{\frac{b_i}{2}, \frac{b_i}{2}, \frac{b_i}{2}\right\}$ recipred

↑ Time-reversal invertent momenta T_{Iwe} - R
 T_{R} STRIMs Two stories : ^① ^a Hamltaion w/ space goo symneties 6 - Bloch's theoren) a set of delocatred espertates ② "Chemistry" approach : solids are builfrom atens which donates some local red elections to for bands -> band structure

2000 is "easy" Write Jour Schrödiger
eqn for all the atoms & all the elections -) turn the crack -> energnes & engenstates OJ Say we have Ere, 14/12 $M =$ J Alled Can me Find localized "orbitals" rode op

- Where do the electrons line? We can start by looking at the position operator & $\langle \psi_{nk} | \chi | \psi_{nk} \rangle = \int d\chi \psi_{nk}^{*}(x) \chi \psi_{ml}(x)$ Problem. Mai(x) are delocatred - they are Continuum normalization convention

< Visi | Vink' > = $\frac{(2\pi)^3}{\pi}S_{nm}S(k-k')$ k, k' 6 BZ

 $U = \left| \vec{t}_1 \right| \left(\vec{t}_1 \times \vec{t}_3 \right) \right|$ -primitive unit cell volume $\int d^3k = \frac{2\pi^5}{\pi}$ $|Y_{nk+2}|\rangle$ $|Y_{nk}\rangle$ for \vec{c} \vec{c} $\sum_{n=0}^{n} e^{i(k-k)x} = \frac{(2\pi)^{3}}{\pi} \sum_{n=0}^{n} \delta(k-k^{2}-\epsilon)$ ECT $=\frac{(2\pi)^3}{3}8(k-k^2)$ $\langle \psi_{nk} | \psi_{nk} \rangle = \frac{(2\pi)^3}{v} \sum_{nm} \left(\vec{k} - \vec{k}' \right)$ $\int d^{x} \Psi_{n k}^{+}(x) \Psi_{n k}^{-}(x) = \Psi_{n k}^{(s)} \Psi_{n k}^{(s)} = e^{(k-x)} \Psi_{n k}^{-}(x)$

 $\begin{array}{ccc}\n\left(\int_{0}^{1} e^{-i(k-k')\cdot x} u_{nk}^{+}(x) u_{nk}(x) du_{nk}^{+}(x)\right) & \text{if }\\ \sum_{k=0}^{n} \int_{0}^{1} e^{-i(k-k')\cdot x} u_{nk}^{+}(x) du_{nk}(x) du_{nk}(x) & \text{if }\\ \sum_{k=0}^{n} \int_{0}^{1} e^{-i(k-k')\cdot x} u_{nk}^{+}(x) du_{nk}(x) du_{nk}(x) & \text{if }\\ \end{array}$ $\frac{F-1}{2}$ $\frac{6}{v^{2}}$ cell
= $\frac{(2\pi)^{3}}{v}$ $\int_{c=1}^{c} dy u_{nk}^{+}(y) u_{ml}(y) e^{-i(kx^{2})^{2}} \int_{c} (k-k^{2})$ Cartinum normalization = $\int dy u_{nk}^+(y)u_{nk}^-(y) < \sum_{n=1}^{\infty} \frac{1}{n!} \langle u_{nk}^+(u_{nk}) \rangle$ NOW $M = X, Y, Z$

 $\langle \psi_{\text{nl}} | x^{\text{nl}} | \psi_{\text{ml}} \rangle = \int d x \ x^{\text{nl}} \psi_{\text{nl}}^*(x) \psi_{\text{nl}}^*(x)$ = $\int d^{3}x e^{x^{4}e^{i(k-k)^{4}}x}u_{nk}^{+}(x)u_{mk}^{+}(x)$ $=\int d^2x \left(\frac{\partial}{\partial k^4}\left(e^{i(k-k)x}\right)U^*_{nk}(x)U_{nk}(x)\right)$ = $i \frac{\partial}{\partial k^n} [S_i \partial_x \psi_{nk}^+(x) \psi_{nk}(x)] - i S_i \partial_x e^{-i(k-k)x} \frac{\partial u_{nk}^+(x)}{\partial k^n} u_{nk}(x)$
= $i \frac{\partial}{\partial r} S_{nm} \frac{\partial}{\partial k^n} S(k-k') - i \sum_{i=0}^{n} e^{-i(k-k')x} \frac{\partial}{\partial x} e^{-i(k-k')x} \frac{\partial u_{nk}^-(x)}{\partial k^n} u_{nk}(x)$ $\frac{1}{2} \left(\frac{2\pi^{3}}{3} \right)$ $S_{nm} \frac{1}{2} \left[\frac{1}{2} S(k-k') + S(k-k') \right] dy$ $\frac{1}{2} \left(\frac{1}{2} \frac{1}{2} \frac{1}{2} (k) \right)$

 $\frac{(2\pi)^{3}}{7}$ $[5S_{nm}\frac{\partial}{\partial k^{n}}S(k-k^{\prime})+S(k-k^{\prime})A_{m}^{nm}(k)]$ $A_m^{nm}(k) = i \int dy (u_m^*(y)) \frac{\partial u_{mk}(y)}{\partial k} = i \langle u_{nk} | \frac{\partial u_{mk}}{\partial k} \rangle$ Berry connection to get invultion, consider a mare packet $\langle \psi_{nk} | \chi^n | f \rangle = \frac{\pi}{(2\pi)^3} \int d k' \sum_{m=1}^{N_{occ}} f_{m k'} \langle \psi_{nl} | \chi^n | \psi_{m k'} \rangle$

= $\int d\mu' \sum_{m=1}^{N_{occ}} \int_{m}\mu' (iS_{nm} \frac{\partial}{\partial l^{m}} S(l-l') + A_{m}^{nm}(l)S(l-l'))$ $i \frac{\partial f_{nk}}{\partial k^{m}} + \sum_{m=1}^{N_{occ}} A_{m}^{nm}(k) f_{nk} = i[D_{nk}f]_{nk}$ $D_{xx} = \frac{d}{d\mu} \delta_{nm} - iA_{\mu}(k)$ correction What you get due to
He Berry Covarient For position connection (OTH) $|\psi_{\lambda}|\rangle$ if t'e move "real nonesting