Lecture 4	Recapi Representation & of a proup G
	• a vector space V • a group homomorphism Q:G->U(V) to unitary operators on V
Let G space	be a group, $Q:G \rightarrow U(V)$ a representation on a vector V $Q:G = Q(Q) \in U(V)$
Given	a vector $ v > cV$ $P(g) v > cV$

we can book for WEV such that erg) Iw> eW for all geG, Iw> eW such a subspace is called a invoriant subspace given WEV, we can consider W+ - orthogonal conplanent of Wi $W^{\perp} = \{|w_1\rangle \in V | \langle w_1|w \rangle = 0 \text{ for}$ all $|w\rangle \in W$ V=WOWL every INSOV can be wh writter uniquely as INS=INS+IW1>

Since Q(g) are all unitary, W¹ is also an invariant subspace pf: let lw>eW, lw1>eW4 Winvariant, e(g) w>eW for any seG $\Rightarrow \langle W^{\perp}|(\rho(g)|W\rangle) = O$ $= \left(\zeta W | (\varrho(g))^{\dagger} W^{\perp} \right)^{*} = 0$ for my geb =) $< w | e^{(g-1)} | w^{\perp} > = 0$ for any IW>EW for any IW+>EW+1

-> e(g-1)/w1>eW1 =) W⁺ is an invariant subspace orthonormal basis for V: { [11,2, 12, 12, 12] PTS) as a matrix in this basis $= \frac{2}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{$ $P(S) = \begin{cases} \langle v_1 | \rho(S) | v_1 \rangle \\ \langle v_2 | \rho(S) | v_1 \rangle \\ \langle v_2 | \rho(S) | v_1 \rangle \\ \langle v_2 | \rho(S) | v_2 \rangle \end{cases}$

SIW1>, IW1>, IW1>..., be an orthonormal basis for Wt Q basis for $V = W \oplus W^{+} = V = Z = W_{1}^{2} = W_{1$ W WL in this Gasis

P(S) =. ((W; 1853) W) ((W; 1853) W) W $C_{W}(s)$ (Wilesly) <wilesly with $|\mathcal{Q}_{wi}(s)|$ Q RW and RWL are tlemselves representations acherye of basis $6 \approx 6^{M} \oplus 6^{M+1}$ is unitarily equivalent to PW, PWI are subrepresentations of P R. 2 R2 a reducible representation $U_{e,G}U_{t}^{t}=e_{c}G_{t}$

¥ y	Any representation that is not reducible is called irreducible
Note	if Q is irreducible then the only invariant subspaces of Q are EZZ and V
Trivial	example: Let \overline{G} be any grave, and $V=\overline{C}$ vector space of complex numbers $U(\overline{C}) = \{e^{i\phi}/\phi_{G}(0,2,i)\} = U(1)$
· ·	$Q: g \rightarrow Q(S) = I = e'^{\circ}$ $Q(S, S_{2}) = 1 = Q(S_{1})Q(S_{2}) = 1 \times 1$

trivial representation - rireducible me knowi $V_{1_{z}} = \{1, 2, 1\}$ $P_{1_{z}}(\hat{n}, \theta) \rightarrow e^{i\frac{\theta}{2}\hat{\sigma}\cdot\hat{n}}$ Nontrivual example: SU(2) Are there (nontrivial) invariant subspaces for Pixi.

 $\left\{\frac{1}{\sqrt{n}}\left(\left|\hat{j}\right|\right\} - \left|\underline{j}\right|^{2}\right)\right\} = W - singlet state$ invariant subspace In this basis $P_{\frac{1}{2}\times\frac{1}{2}}(\hat{n}, p) = \begin{pmatrix} \overline{1} & \overline{0} \\ \overline{0} & -i\hat{n}\cdot\hat{L}\overline{0} \\ \overline{0} & P \\ Representation \\ Pepresentation \\ Pepresent$

Clebsch-Gordon coeffs' Mostrix elements of the Unitary matrix that block-diagonalize e Schwis Lemma (22 parts) (Alternatively P: 6-3 GL(V) "Weyl unitarity (VIW) - Heimition trick" inner product $\langle \langle v | w \rangle \rangle = \langle e(g) v | e(g) w \rangle$ Jr. Schur's Lenna port 1: let 6 be agroup (v,) (v,) (v,) two <u>irreducible</u> representations (irreps) of G $P_2: G \rightarrow U(V_2)$

ard q M	Noterix $H: V_1 \rightarrow V_2$	$ v_i\rangle \in V_1$ $ v_i\rangle \in V_2$ $ H v_i\rangle \in V_2$
IF <u>Hers</u> then either	= Rr(g)H for all go G D H=O O His inversible	
PF if H=O	ker H = V ₁ In H = {o}	1 1

	rf H is invertible	ker H = { d }	
· · · · · · · · · · ·		In H= V2	
Lets	book at Ker H= {100	$V_1 HW = 05$	
	pich IV> 6 Ker H		
\bigcirc	$= Q_{y}^{(3)} + v_{y}\rangle = H(P_{y}^{(3)}) $	$ v_i\rangle$	11 - C
· · · · · · · · · · · · · · · · · · ·	=> IV,> Eker H then s	ors $Q_{1}(S) V_{1} > tor$	alloco
· · · · · · · · · · ·	=> ker H is an invi	ariant subspace of M	· · · · · · · ·
	but Q_1 is irreduci	Jole	

· ·	$\operatorname{ker} H = \begin{cases} \{\delta\} - H \ is \ one + o - one \end{cases}$ $V_{1} - H = O$
Non	lets look at In H: { IV2>EV2 IV2>= HIV; > for sere IV2>EV1 }
e l	$v > = In H - 1w > = H v > 1v > eV_1$ $g) w > = e_{2}(g) H v > = H e_{1}(g) v >$
]	M J In H is an invariant subspace of P2 (V: H is "onto"
· ·	$I_{A}H = \begin{cases} v_{2} \\ \ddot{\partial} \\ \vdots \\ H = \ddot{\partial} \end{cases}$

	Estler H=O or
· ·	H is one-to-one and onto -> His invertible
Part 2	Suppose Vi=Vz=V and Ri=Ri=R are the same, R rereducible and Anite-durensional
Q	nd assure we have H that satisfies part 1 guillion $H = \sum [H, P(S)] = 0$ $H = \sum [H, P(S)] = 0$
	Hen either: $H=0$ or

· · · · · · · · · ·	H= > Idv < , dentey matrix
.	(if P is an irrep, the only matrix that commutes with every PS) is the identity
bť;	Part 1 rays H=O er Hinvertible Assume Hinvertible -> H a finite dim square matrix
SID>10:00	=> It has at least one espennector IV> W/ espennector
γ σt	$B = H - \lambda I d_{v} - \Gamma [B, P(S)] = O$
· · · · · · · · · ·	=> B=OV or B 15 invertible

BIV>=O So B not B=0 => H= 2Idv IF G is a symmetry srayo H C = UO9, H] $\{ |\Psi_{i} \rangle, i=1, ..., N \} = \sum_{j=1}^{N} |\Psi_{j} \rangle \langle \Psi_{j} | \rho(s) | \Psi_{j} \rangle$ $\rho(s) |\Psi_{i} \rangle = \sum_{j=1}^{N} |\Psi_{j} \rangle \langle \Psi_{j} | \rho(s) | \Psi_{j} \rangle$

 $[H]_{ij} = \langle \Psi_i | H | \Psi_j \rangle$ $\sum_{k} [H]_{ik} Q_{kj}(s) - Q_{ik}(s) [H]_{kj} = 0$ -) Stated trasforming in an inrep of the symmetry group are de generate $[H_{ij}] = E_i S_{ij}$ Ex. Norrelativistic Hydrogen atom Fred n, [Inlmz] l=0,-1 Mz=-l,-l}

 $V_1 = \{ |nl_1 m_2 \} \in \text{spin} l_1 \text{ inter of SOB} \}$ $V_2 = \{ |nl_1 m_2 \} \leftarrow spin l_2 intep SO(3) \}$ litle different dimensions Port 1: $\langle nl_1m_2|H|nl_2m_2' \rangle = S_{l_1l_2}$ Port 2: $\langle nl_1m_2|H|nl_2m_2' \rangle = E S_{m_2m_2'}$

Part 2.5. let 6 be agreep $\begin{array}{c} Q_{1}: G \rightarrow \mathcal{O}(V_{1}) \\ Q_{1}: G \rightarrow \mathcal{O}(V_{2}) \end{array}$ Printie dun Irreps $e_2(s)H = He_1(s)$ H invertible -> P,5 Pz rep of SUS2) SOB let l67/+ ; 2x2 Unitariy matices W/ determinant -1

 ディアリー	 	