Lecture	5 Remindersi - HWI is due 9/19
· · · · · · · · · · · ·	-Office his start 9/11 () April via zoon
Recap:	p:G->U(V) is an irreducible representation if it has no nontrivial invorant subspaces -> we can't block-diagonalize every P(S) simultaneously
· ·	Schur's Lenna: (D) $P_1: G \rightarrow U(V_1)$ both meducible $P_2: G \rightarrow U(V_2)$
· · · · · · · · · · · ·	$H:V_1 - V_2$ $He_1(3) = e_2(3) H$
· · · · · · · · · · · ·	then H=O or H is invertible
.	

Part 2.5:	$\begin{array}{l} P_{1}:G \rightarrow U(V_{1}) \\ P_{1}:G \rightarrow U(V_{2}) \\ H_{1}:V_{1} \rightarrow V_{2} \end{array} \qquad \text{ In reducible} \\ P_{2}(9)H = HP_{1}(9) \end{array}$
	"intortwiner"
· · · · · · · · · · · · · · · · · · ·	then H is invertible => Ris Ri are unitarily equivalent
P£;	$Consider H^{T} = (H^{*})'$
(e(5 ⁻¹)H) [†] 11 11 [†] e2(5)	$H^{\dagger}: V_{2} \rightarrow V_{1}$ $= (He_{1}(S^{-1}))^{\dagger} = P_{1}(9^{-1})^{\dagger}H^{\dagger} = P_{1}(9)H^{\dagger}$ $= (He_{1}(S^{-1}))^{\dagger} = P_{1}(9^{-1})^{\dagger}H^{\dagger} = P_{1}(9)H^{\dagger}$ $= P_{1}(9)H^{\dagger}$

Consider H+H: V, ->V) $H^{+}H_{e_{1}(2)} = H^{+}e_{1}(2)H^{+}H_{e_{1}(2)}H^{+}$ = 6'*(*2)H₊H $[P_1(g), H^{\dagger}H] = O$ J, Schw's lemma pt 2 $H^{+}H=\lambda Id_{V_{1}}$ $\left[H^{+}=\lambda H^{-}\right] \rightarrow U = \sqrt{\lambda} H$ $U^{\dagger} = \frac{1}{\sqrt{2}} H^{\dagger} = \sqrt{2} H^{-1} = U^{-1}$ so U is unitary $U^{+}_{0}(S)U = I_{T}H^{-1}_{0}(S)H = H^{-1}_{0}(S)H = P_{1}(S)$

contrapositive ,f Hr f P, FP2 ->	$P_{r}(s) = P_{r}(s)H$ and H=O
Character Theory: easy way unitarily equi	to tell when representations are invalent a representation is irreducible
count/enum 1.1 0:G-J()(V) a represe	nerate all the impg of a groups
Des character Xe is a finiti	\sim
2, G-3C 2, Co) - tr[00]	

 $(U_{Q_1}(g)U^{\dagger} = P_2(g) for$ all $g \in G$ IF l'2 l'2 are equivalent reps then $\mathcal{K}_{P_1}(s) = \mathrm{tr}\left[P_2(s)\right]$ $= f \left[U e_{1} e_{2} U^{\dagger} \right]$ $= tr [e_1(s)] = X_e(s)$ $e_1 \approx e_2 = \mathcal{X}_{e_1} = \mathcal{X}_{e_2}$ (reps w/ distinct characters are inequivalent) (2) Q or representation $g_z = gg_1g^{-1}$ ($g_1 \& g_2$ are conjugate) $\chi_{e}(9_{1}) = tr(9(9_{2}))$

$= tr[e(33,3^{-7})] = tr[e(3)e(3,)e(3)^{-1}]$
$= tr[e(s_1)] = \mathcal{X}_e(s_1)$
Characters are invariant under conjugation:
all elements of the same conjugaced class
Cg={g'66}g'=9,99,-1 fer some g,66}
have the same character as g
-) Characters are constant on conjugacy classes
(we call these "clars functions")

 $\mathcal{X}_{e,oe}(s) = \operatorname{tr}\left[\left(\frac{e_{(s)}}{o}\right) = \left(\frac{e_{(s)}}{o}\right)\right]$ = tr[[2, [3]] + tr[[2, [3]]] $=\chi_{q}(s)+\chi_{q}(s)$ KROR-KR + KR - the character of 9 reducible rep 1stle Sun of characters of its irreducible components

Example: the grou	p Dz Fron HWI
$D_{r} = \{E, C_{r}\}$	x, C_{1}, C_{1}
Vecter representation	$R_{V}(E) \stackrel{\scriptstyle \sim}{\scriptstyle \sim} \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{smallmatrix} \right)$
Λ	$\mathcal{P}_{V}(\mathcal{C}_{1x}) = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$
chennt 15,1ts own	$\mathcal{P}_{\mathcal{V}}(\mathcal{C}_{2\mathcal{Y}}) = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$
Conjugacy Class	$e_{V}(c_{z\bar{z}}) = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$

Xer 3-1-1-1 Ry; reducible of Rev 3-1-1-1 reducible ? three invariant sulspaces $\left\{ \begin{pmatrix} b_1 \\ 0 \\ 0 \end{pmatrix} \right\} \left\{ \begin{pmatrix} 0 \\ b_2 \\ 0 \end{pmatrix} \right\} \left\{ \begin{pmatrix} 0 \\ b_2 \\ 0 \end{pmatrix} \right\} \left\{ \begin{pmatrix} 0 \\ b_2 \\ b_3 \end{pmatrix} \right\}$ $e_V = e_{B_1} \oplus e_{B_2} \oplus e_{B_3}$ Asider for a 12 representation

 $\frac{|E C_{2x} C_{2y} C_{2z}| - Conjugacy}{|Creeps} = \frac{|1 1 - 1 - 1 - 1|}{|1 - 1 - 1|} Characters$ $\frac{|1 - 1 - 1 - 1|}{|1 - 1 - 1|} Characters$ $\frac{|1 - 1 - 1 - 1|}{|1 - 1 - 1|} Characters$ Q(3)= 1×1 matrix-# +rp(3) = b(d)K (S) Aside, e(E) = IJ Character tables $\chi_{o}(E) = tr(Id) = dim e$

Schus's Lemma -> Worderful Orthogonality Relations/
Schur Orthogonality relations
Let G be a finite group, P.; G-) U(V1) P.; G-> U(V2)
both meducible and A any arbitrary dimly x dimly matrix A;V1-JZ
trick, summing over all group elements

 $A_{G} = \sum_{g \in G} P_{g}(g) A P_{g}(g)$ $H_{on} \quad A_{\underline{c}}(\underline{g'}) = \sum_{\underline{s}\in G} P_{\underline{c}}(\underline{s}') A P_{\underline{s}}(\underline{s}) P_{\underline{s}}(\underline{s}')$ $= \sum_{\substack{S \in G \\ S \in G \\ g'' = 95'}} P_{2}(g'') A P_{1}(gg') = g'' = 95'$ $= \sum_{\substack{S \in G \\ g'' = 95'}} P_{2}(g'g'') A P_{1}(g'') = g'g'' = g'g'' = 1$ $= e_2(s')A_6$

50 AG satisfies the alsumptions of Schur's
lemma part D (A=0 (if P, \$P2)
So then A_{0} , $S = \frac{1}{2} Id P_{1} = P_{2}$
Apply this to a special choice
$A = E_{ij} = \begin{pmatrix} c & o & - \\ o & z \\ & z \end{pmatrix} \int J + r \sigma u du$

[E.j]"= Sin Sju [Eij] = 52 [P2(S-1)[Eij] (P2(S)] = 9 966 [P2(S-1)[Eij] (P2(S)] to find) let P,= & and take the trace of both sides

 $\sum_{M} \sum_{g \in G} \left[e_{i}(g^{-j}) \right]^{M} \left[e_{i}(g) \right]^{jM}$ LHS $= \sum_{g \in G} S_{ij} = |G|S_{ij}$ J= Jon P, Sij RHS ZJS = J dim P1 Schw Orthogenality Formula $\sum_{g \in G} \left[P_{2}(g^{-1}) \right]^{m} \left[P_{1}(g) \right]^{j} = \sum_{d \in I} \left[P_{1}(g) \right]^{j} = \sum_{d \in I$

 $l_{e,z} U e_{v} U^{\dagger}$ $\sum_{s \in G} \left[P_{i}(s^{-1}) \right]^{i} \left[UP_{i}(s) U^{\dagger} \right]^{j v}$ $= \sum_{g \in G} \left(\frac{P_{L}(S^{-1})}{P_{L}(S^{-1})} \right) \int_{0}^{y} \frac{1}{P_{L}(S)} \frac{1}{P_{L}(S)} \int_{0}^{y} \frac{1}{P_{L}(S)} \frac{1}{P_{L}(S)} \int_{0}^{y} \frac{1}{P_{L}(S)} \frac{1}{P_{L}(S)}$ UJa Ut [JIGI Sid SMB] = 161 UJi Uny

 $\sum_{NV} \sum_{S \in G} \left[P_{2}(S^{-1}) \right]^{M} \left[P_{1}(S) \right]^{N} = \begin{cases} O_{1} \neq P_{1} \neq P_{2} \\ = \begin{cases} IGI = 5 \\ J_{1} \neq P_{2} \\ = \\ J_{2} \neq P_{2} \\ = \\ J_$ If PSP, $\sum_{\substack{g \in G \\ II}} \chi_{p}(s^{-1}) \chi_{p}(s)$ $\Sigma \chi_{p}^{*}(S) \chi_{p}(S)$ $\frac{1}{161} \sum_{s=6}^{t} \chi_{e_{s}}^{(g)} \chi_{e_{1}}^{(s)} = \begin{cases} 0 & \text{if } e_{1} \\ 1 & \text{if } e_{1} \\ 1 & \text{if } e_{1} \end{cases}$ + P1\$ P2 F 6, & 62

(Xe, Xe,) irreducible Under this inner product, Characters are orthonormal =) he can use characters to figure out how to decompose a representation P into illeps $P \simeq P_1 \oplus P_1 \oplus \dots \oplus P_2 \oplus \dots \oplus P_2 \oplus \dots \oplus P_2 \oplus \dots$ ≈ ⊕n;e; N: - Multiplicity of P;

 $\mathcal{X}_{e} = \sum_{i=1}^{U} \Lambda_{i} \mathcal{X}_{e},$ in the decomposition of P $\langle \chi_{e_j}, \chi_{e_j} \rangle = \sum_{i=1}^{j} \Lambda_i \langle \chi_{e_i}, \chi_{e_i} \rangle = \Lambda_j$

Character tables Theracters are constant on conjugacy darks I the of irreps S/H ef conjugacy

																					-1			•								
																				. (1	Q (Н	p. (
																								\sim -	ר נ							
																				• •												
																				• •												
			•			• •			• •		•	• •		• •			• •			• •				• •		• •		• •		• •		
			•		•	• •		•	• •		•	• •				•	• •		•	• •		• •		• •		• •		• •		• •		
			•		•	• •		•	• •		•	• •				•	• •		•	• •		• •		• •		• •		• •		• •		
			•					•	• •										•	• •		• •		• •		• •		• •		• •		
			•		•	• •			• •		•	• •		• •		•	• •			• •		• •		• •		• •		• •		• •		
			•		•	• •		•	• •			• •				•	• •		•	• •		• •		•		• •		•		• •		
			•					•	• •					• •					•	• •		• •		• •		• •		• •		• •		
			•		•	• •		•	• •			• •		• •		•			•	• •		• •		• •		• •		• •		• •		
		•	•		•	• •		•	• •		•	• •	•			•	• •		•	• •		•		• •		• •		• •		• •	•	
			•			•			• •			•					• •			• •		• •		• •		• •		• •		• •		
			•			• •			• •			• •					• •			•				•		• •		•		• •		
									• •					• •						• •		• •		• •		• •		• •		• •		
		•	•		•	• •		•	• •		•	• •		• •		•	• •		•	• •				•		• •		•		• •		
			•																	• •		• •										
			•																	• •		• •										
					•	• •			• •		•	• •				•				• •				• •		• •		• •		• •		
					•	• •			• •		•	• •				•				• •				• •		• •		• •		• •		
					•						•					•	• •															
					•						•					•	• •															
					•											•	• •															
					•											•	• •															
																	• •															
						• •						• •					• •															
						• •						• •					• •															
														• •																		