
20 points

Due: 04/14

Problem 1 Laplace Transform

Find the Laplace transform of the following functions:

- (c) $e^{-2t} e^{-5t}$
- (d) $2e^{-3t} 4e^{-6t}$ (e) $5 + 3e^{-10t}$

Problem 2 Inverse Laplace Transform

Find the inverse Laplace transform of the following functions:

(a)
$$\frac{10}{s+5}$$

(c)
$$\frac{5s+4}{s^2+5s+20}$$

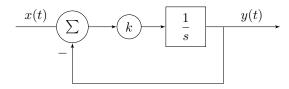
(b)
$$\frac{10}{s(s+5)}$$

(d)
$$\frac{5s+4}{s(s^2+5s+20)}$$

Problem 3 Step response

15 points

 $20\,\mathrm{points}$

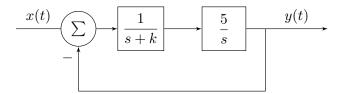

Find the unit step response of the following system using Laplace transforms. Then plot the output for each of

(a)
$$k = 0.1$$

(b)
$$k = 1$$

(c)
$$k = 10$$

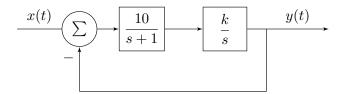
with MATLAB.



10 points

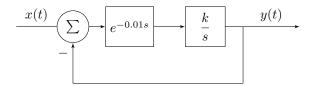
Due: 04/14

Problem 4 More step response


For the system given below, find the unit step response if k = 5.

Problem 5 Impulse response

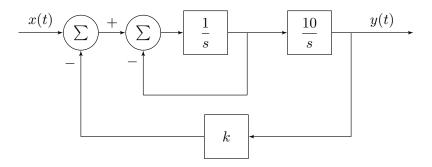
10 points


Given the system below. Find the impulse response with k = 1 and k = 0.1. Use MATLAB to plot **both** responses. How does decreasing k change the output?

Problem 6 System spectrum

15 points

Given the system below, use Laplace analysis to find the transfer function. Then find the response to a step input of magnitude 10 setting k = 20. Plot the magnitude and phase of the system from 1 to 200 rad/sec and use unwrap command for phase greater than 180°.



Problem 7 System responses

10 points

For the system shown below, with K=1, find the response to

- (a) a function stepping from 0 to 4 (on the y-axis)
- (b) a function equivalent to 4 times the impulse function

