
CS125 Third Midterm Exam Fall 2011 Page 1 of 4 SOLUTION

CS125 MT3 Fall 2011 Solution
1. Recursive Concepts – 14 points (2 points each)

1 public static int mystery(int a) {
2 if(a == 256) return 3;
3 return 1 + 2 * mystery(a*4);
4 }

a. Which line in the above code implements a Recursive Case? Line 3
b. Which line in the above code implements a Base Case? Line 2
c. Circle one italicized correct word within the {}'s to best describe the structure of the recursion.

"mystery(1) creates a {chain } of activations"
d. Carefully explain why the mystery method is forward recursive not tail recursive. Your answer
should highlight which parts of the method cause the method to be forward recursive.
The mystery function is forward recursive because computation (doubling and add one) will be
performed after the recursive call completes
e. mystery(255) does not return an integer result. Complete the following sentence to explain why.
 "mystery(255) is an example of infinite recursion"
f. Refactor line 3 so that mystery uses a tree of activations:
 New Line 3: return 1 + mystery(a*4)+ mystery(a*4);
g. Which one of the following best describes the refactored mystery function, that has a tree of
activations, when compared to the original implementation?
 C. mystery(1) will now take more time to calculate the same result. Your answer: C

2. Tracing code – 11 points

1 public static int foo(int a, int b) {
2 if (a==b) {
3 return b;
4 }
5 int min = Math.min(a,b), max = Math.max(a,b);
6 return foo(min,min) + foo(max - min , min);
7 }

a. Which one of the following statements best describes the method 'foo' in the above code?
 C. Each activation will have its own local, temporary variable min. Your answer: C
b. Which one of the following statements best describes the execution of foo(1,0)?
 D. Example of infinite recursion. In practice an exception will be thrown. D
c. Create an activation diagram below for the execution of foo(3,12). For full marks ensure your
activation diagram includes:
d. Use your diagram to determine the returned value of foo(3,12) ? 12
e. How many times is foo activated (called), including the first "foo(3,12)" ? 7

3,3

3,3

3,12

3,3

3,9

3,6

3,3

3

3

3 3

6

12

9

CS125 Third Midterm Exam Fall 2011 Page 2 of 4 SOLUTION

3. Linked Lists – 15 points (5 points each)
public class Link {
 private int value; // Always non-null
 private Link next; // null for the last link
 public Link(int v,Link n) {this.value = v; next = n;}
 public Link insert(int v) {
 if(v < this.value) return new Link(v, this);
 if(next != null) next = next.insert(v);
 else next = new Link(v, null);
 return this; //we don't need to move.
 }
public int toSum() {
 if(next == null) return v;
 return v+next.getSum();
}
public int countEven(int acc) {
 if(v%2 ==0) acc++;
 if(next == null) return acc;
 return next.countEven(acc);
}
}
4. Twenty Questions. Tree Recursion – 15 points
The class below models a tree of Yes-No Questions for the game "20 Questions". Each question object is
referenced just once in this network (i.e. it's a tree).
public class Question {
 private String text;
 private Question yes; // possibly null
 private Question no; // possibly null
 // assume a constructor is written to initialize the above instance variables.
a. Write a recursive instance method count that takes no parameters and returns an integer. Your method will recursively visit every question in the tree. Return the total number of question
objects that have both yes and no set to null.
public int count() {
 if(yes == null && no == null) return 1;
 int sum = 0;
 if(yes != null) sum += yes.count();
 if(no != null) sum += no.count();
 return sum;
}
b. Write an instance method max that takes no parameters and returns a reference to a question object: Return the question with the longest text.
public Question max() {
 Question best = this;
 if(yes != null) {
 Question temp = yes.max();
 if(temp.text.length() > best.text.length()) best = temp;
 }
 if(no != null) {
 Question temp = no.max();
 if(temp.text.length() > best.text.length()) best = temp;
 }
 return best;
 }
5. Binary Search – 15 points
By analyzing tagged images and web pages, you create a simple database - an array of Pair objects (see below). Each Pair object contains a unique Facebook user name in lowercase and
the likely UIUC email of the user:
public class Pair {
 public String name;
 public String uiuc;
}
a. Complete the following recursive binary search method to quickly find the relevant Pair object in an array. Use a 'divide and conquer' approach: Assume the given array is already sorted
alphabetically by the name variable. Search the array only between loth and hith indices for the Facebook user that matches the search parameter 'key' . Return null if no name matches the
search key. All values in the array are valid and non-null.

CS125 Third Midterm Exam Fall 2011 Page 3 of 4 SOLUTION

class Lookup {
 public static Pair search(Pair[] data, String key, int lo, int hi){
 int mid = (lo+hi)/2;
 if(lo>hi)return null;
 String n = data[mid].name;
 if(n.equals(key)) return data[mid];
 if(n.compareTo(key) > 0)
 return search(data,key,lo,mid-1);
 return search(data,key,mid+1,hi);
 }
b. Create a wrapper class-method toEmail that returns a String and takes two parameters: 'data' – a sorted array of Pair objects, 'key' – a string which is the name to find. Return the
corresponding email, or a question mark, "?", if the key does not match any names. Use the search method above to perform the search of the array.

public static String toEmail(Pair[] data, String key) {
 Pair p= search(data,key, 0, data.length-1);
 if(p!= null) return p.uiuc;
 return "?";
}

6. Recursive Searching and Sorting Concepts – 15 points

a. Complete the following recursive method to return the index of the smallest value of the sub-array {data[lo], data[lo+1], ... up to data[hi]}. Assume 0 <= lo <= hi <
data.length and the array values are unique.

public static int findMin(double[] data, int lo, int hi) {
 if(lo==hi) return lo;
 int best = findMin(data,lo+1,hi);
 if(data[best]<data[lo]) return best;
 return lo;
}
Alternative tail recursive:
 if(lo==hi) return lo;
 if(data[lo]<data[hi]) return findMin(data,lo,hi-1);
 return findMin(data,lo+1,hi);

b. Which one of the following best describes a Selection sort on a pile of playing cards?

D. Put all of the unsorted cards down. Keep picking up the smallest valued card from the
remaining unsorted cards and append it to the cards held in your hand.

Your Answer: D

c. Consider the following array of 8 values for sorting using Selection Sort (low to high).
7 3 11 17 4 12 14 35
Calculate the values in the array after the 4th swap has completed. Write your answer below:
3 4 7 11 17 12 14 35
d. Once all 8 array values have been sorted and all swaps have completed,
 how many times has the value '7' moved to a new position? 3
 how many times has the value '35' moved to a new position? 0 (1 also acceptable)
 how many times has selection sort
 called findMin (ie found the index of a minimum)? 7 (8 also acceptable)

e. Choose the best description of this code:
for(int i=0;i<data.length;i++) {
 int m = i;
 for(int j = i; j < data.length; j++)
 if(data[j] < data[m]) m = j; D. Iterative Selection sort
 swap(data,i,m);

 }

"abc".compareTo("aba") returns > 0
"abc".compareTo("abc") returns 0
"abc".compareTo("abd") returns < 0

CS125 Third Midterm Exam Fall 2011 Page 4 of 5 SOLUTION

7. Recursive Dreaming. Selection Sort – 15 points
/** Swaps values at data[i] and data[j] */
public static void swap(double[] data, int i, int j) {
 double temp = data[i];
 data[i] = data[j];
 data[j]=temp;
}
/** Sorts all values (smallest first) between lo-th and hi-th index (inclusive) using a recursive
selection sort. */
public static void sort(double[] data, int lo, int hi) {
 if(lo<hi) {
 swap(data,lo, findMin(data,lo,hi));
 sort(data,lo+1,hi);
 }
}
/** A wrapper method to sort the entire array using selection sort. This method just calls the recursive
method above.*/
public static void selectionSort (double[] data) {
 sort(data,0,data.length-1);
}

