
CS125 : Introduction to Computer Science

Lecture Notes #18
static versus non-static, and Constructors

c©2005, 2004, 2002, 2001 Jason Zych

1



Lecture 18 : static versus non-static, and Constructors

Some more terminology

• instance – an object. Every object is an instance of a particular class.

• instantiation – the allocation of an object. We have a class, and we “allocate an object of
that class”, or “instantiate an instance of that class”.

• The two kinds of methods:

– instance method – does NOT have static on its first line; this method is tied to the
instance – i.e. you choose an instance, run the method on an instance and it operates
on the variables of that instance and no other, until that method call has completed.
printClock() from the last lecture is an instance method of the class Clock; when you
called the method printClock(...), you indicated what reference’s object it should
manipulate, by listing that reference before the dot in front of the method call, and then
the method call manipulated that object (i.e. its this reference pointed to that object).
If you do not specify which instance the method should manipulate, then you cannot
call the method (i.e. the method call is a syntax error unless you have a reference and
dot in front of it)

– class method – has static on its first line; this method is not tied to any particular
instance, but rather is just a helpful method that we’ve put in this class because it’s
related to this class. Keyboard.readInt() is a class method.

• The four kinds of variables:

– local variable – a variable declared using a variable declaration statement within the
curly braces of a method

– parameter variable – a variable “declared” in the parameter list of a method (the this
variable of an instance method gets included in this category, though the compiler de-
clares it automatically, without you needing to write code to do so)

– instance variable – a variable declared using a variable declaration statement within a
class but not within any method, and without the keyword static on the declaration
line; such a variable is tied to an instance – i.e. each instance of that class has its own
version of the instance variable, and two different instances will each have their own,
independent version of an instance variable, rather than sharing the same variable. In the
last three notes packets, hour, minutes, and AM are instance variables of the class Clock.
(In a sense, the indexed array cells of an array are also instance variables, though since
they are “named” with indices instead of names, we don’t usually call them “instance
variables”.)

– class variable – a variable declared using a variable declaration statement within a class
but not within any method, and with the keyword static on the declaration line; there
is one copy of this variable, that can be accessed from anywhere in the program, through
the class name itself – rather than one copy per instance, that gets accessed through a
reference to that instance. (We’ll talk more about class variables in a moment.)

2



So, we saw last time that instance methods and class methods basically did the same thing, just
via different syntax. So, why might you use one over the other? Well, basically, instance methods
place the “focus’ on your data instead of on the method. That is to say, there’s no real difference
in the machine between the two. They are just two different sets of syntax for accomplishing the
same thing – it’s just that the syntax for instance methods lets you think of a method as something
that runs on an object, rather than thinking of an object as something you send to a method. So
the use of instance methods can change the way you view your program – you tend to think of
your data first, rather than thinking about your subroutines first. That’s a subtle difference, so for
now, we’ll just say that sometimes class methods are more convenient, and other times instance
methods are more convenient. You won’t have to choose which is the better way in this course,
but you do want to understand the syntax for writing and using both kinds of methods. Generally,
though, we will make something an instance method if we can.

Another way to look at the instance method syntax is that it makes calling instance methods
consistent with using instance variables. If you have an instance variable or instance method, you
access it by using a reference to that instance (i.e. a reference to that object), followed by a dot,
followed by the variable or method. For example:

Clock c1 = new Clock();
c1.hour = 9;
c1.minutes = 53;
c1.AM = true;
c1.printClock();

If you have a class variable or class method, you access it by using the class name, followed
by a dot, followed by the variable or method. For example, in the Math class you might see the
following:

public static double PI = 3.1415926;
public static double cos(double x) {...}

and you’d use those things as follows:

double myVal = Math.PI;
double cosOfMyVal = Math.cos(myVal);

You can have classes with a mix of class variables and methods, and instance variables and
methods, but we won’t do that too often in this course – our classes will tend to have only “class
stuff” (i.e. “static stuff”) or only “instance stuff” (i.e. “non-static stuff”).

3



Constructors

Constructors are instance methods used to initialize an object when it is first created.

• Same name as class

• No return type

• When object is created, some constructor is always called. (what if you don’t write one?
More on that later.)

Let’s look at the Clock class again...but this time let’s leave out the instance method SetTime
(we could have kept it as well, but this way the class will still fit on one slide) and add a constructor
which does the same thing as SetTime did).

public class Clock
{

public int hour;
public int minutes;
public boolean AM;

public Clock(int theHour, int theMinutes,
boolean theAM)

{
this.hour = theHour;
this.minutes = theMinutes;
this.AM = theAM;

} // but you don’t *need* the this. part

public void printClock()
{

System.out.print("Time is " + this.hour + ":");
if (this.minutes < 10)

System.out.print("0");
System.out.print(this.minutes + " ");
if (this.AM == true)

System.out.println("AM.");
else // AM == false

System.out.println("PM.");
}

} // end of class

4



public class ClockTest
{

public static void main(String[] args)
{

// declare reference variables
Clock home;
Clock office;

// create "home" object;
// initialize "home" reference
home = new Clock(2, 15, true);

// create "office" object;
// initialize "office" reference
office = new Clock(7, 14, false);

// call instance method to print
// instance variables
home.printClock();
office.printClock();

}
}

The expression:

new Clock(2, 15, true)

or, in fact, any object allocation (except for an array), is a three-step process:

new Clock(2, 15, true) object is
--------- allocated

(1)

new Clock(2, 15, true)
------------------ object is

(2) initialized
using constructor

new Clock(2, 15, true)
---------------------- address of

| object in memory
address <------| (3) is returned

and then of course that returned address would be stored in a reference if the expression new
Clock(2, 15, true) were used in a line like this:

Clock c1 = new Clock(2, 15, true);

5



Method Overloading

You can have multiple constructors in one class. Having two methods with the same name (but
different parameter lists) is known as method overloading, since we are overloading the method name
with multiple definitions. If the name is the same, the compiler can only figure out which method
we want by comparing parameter lists, so the parameter lists must then be different. This can be
done for constructors or for any other methods. When you call the System.out.println(...)
methods, the same idea exists there – there are many different versions of that method, all with
different parameter lists. The method with no parameters, matches the case where you have no
arguments in your System.out.println() call. The method with one integer parameter, matches
the case where you have one integer argument for your method call. And so on.

public class Clock
{

public int hour;
public int minutes;
public boolean AM;

// a constructor
public Clock()
{

this.hour = 12;
this.minutes = 0;
this.AM = true;

}

// another constructor
public Clock(int theHour, int theMinutes,

boolean theAM)
{

this.hour = theHour;
this.minutes = theMinutes;
this.AM = theAM;

}

// a third constructor
public Clock(Clock c)
{

this.hour = c.hour;
this.minutes = c.minutes;
this.AM = c.AM;

}

6



// a non-constructor instance method
public void printClock()
{

System.out.print("Time is " + this.hour + ":");
if (this.minutes < 10)

System.out.print("0");
System.out.print(this.minutes + " ");
if (this.AM == true)

System.out.println("AM.");
else // AM == false

System.out.println("PM.");
}

// another non-constructor instance method
public void setTime(int theHour, int theMinutes, boolean theAM)
{

this.hour = theHour;
this.minutes = theMinutes;
this.AM = theAM;

}
} // end of class

public class ClockTest
{

public static void main(String[] args)
{

// declare reference variables
Clock home;
Clock office;
Clock car;

// create objects; initialize references
home = new Clock(2, 15, true);
office = new Clock();
car = new Clock(home);

// change time on "home" clock
home.setTime(8, 13, false);

// call instance method to print
// instance variables
home.printClock(); // Time is 8:13 PM.
office.printClock(); // Time is 12:00 AM.
car.printClock(); // Time is 2:15 AM.

}
}

7



Recall that before we introduced constructors, we still had lines like

home = new Clock();

This is because the system provides a default constructor if we don’t write one. This provided
constructor would be empty:

public Clock()
{

// nothing of value here
}

but at least there is some constructor to call, then. That is why the code in lecture packets 15
through 17 would compile – the compiler would have at least given us an empty, useless no-argument
constructor so that some constructor exists to call, since there has to be some constructor called
everytime a (non-array) object is allocated.

If there are any constructors given, no default is provided. So, if you want two constructors and
one of them is the no-argument constructor, you have to write the no-argument constructor. You
can’t write a 2-argument constructor and assume the no-argument one will be added by default.
You only get the no-argument constructor by default if you have no constructors at all in your
source code.

8


