
CS125 : Introduction to Computer Science

Lecture Notes #31 and #32
Introduction to Algorithm Analysis

c©2004, 2002, 2000 Jason Zych

1



Lectures 31 and 32 : Introduction to Algorithm Analysis

In many situations, there are a number of algorithms we could use to solve a problem, and so we
need to choose which one to use. This choice could be based on a number of factors – for example,
the speed of the algorithm, how much memory it uses, or how much data we need to process. For
any given situation, some of those factors might be more important to us than others. Therefore,
we need a way to describe the time, speed, etc. requirements of an algorithm, so that we can easily
compare algorithms and choose the one that is best for our situation.

For the moment, let’s consider comparing the speed of two algorithms. If we have two algo-
rithms, A and B, for solving the same problem, and if algorithm A is faster than algorithm B, then
that is one possible reason for choosing algorithm A over algorithm B. The problem comes when
we try to define what “faster” means. One thing we could do is to take two different machines, and
run algorithm A on one machine, and run algorithm B on the second machine on the same data,
and time the algorithms with a stopwatch. If we do that, perhaps the following are the results we
get:

Algorithm A Algorithm B
on machine 1 on machine 2

------------- ------------
92.7 seconds 20.8 seconds

Now, at first glance, it might seem like Algorithm B is much faster. However, if we are going
to compare algorithms in this manner, we want to compare them in identical environments. For
example, maybe machine 1 is a seven-year-old machine, and once we run both algorithms on machine
2, we get the following results:

Algorithm A Algorithm B
------------- ------------
10.4 seconds 20.8 seconds

Now, the comparison is a bit more appropriate, since the two algorithms are running on the
same machine, the same operating system, etc.

However, things like processor speed and compiler optimizations (i.e. how good the translation
from high-level code to machine code was) can affect this result, and those things really don’t have
anything to do with the abstract description of an algorithm. So, we’d prefer a more mathemat-
ical way of comparing two algorithms, so that we can focus on the key details of the algorithm
without considering what platform things are running on, what compiler was used, or other such
implementation details that have nothing to do with the inherent properties of the actual solution
description itself. Even if the machine, operating system, compiler, etc. were the same for the
tests of algorithm A and B above, we could still get different results if we used a different compiler,
different machine, and different operating system. Above, algorithm B appears to take twice as
long to run as does algorithm A. Perhaps if a different machine were used, the gap would not be
so large. Or perhaps it would be larger.

We also have to take into account data size. Knowing how fast we can sort an array of 10
elements isn’t particularly useful information, because we aren’t always going to be sorting arrays
as small as 10 elements. On the other hand, if we can describe the running time as a function of a
general number of elements, n, then that is more useful. If we increase our data size from n to 2n,
then our running time function will give us the new running time if we substitute 2n for n in the
function.

So, perhaps the data above was for a set of 100 data items:

2



data size Algorithm A Algorithm B
----------- ------------- ------------
100 elements 10.4 seconds 20.8 seconds

Perhaps if we run the same two algorithms (again, using the same machine, same operating system,
same compiler, etc.) but this time we have 200 data items instead of just 100, perhaps we would
get the following results:

data size Algorithm A Algorithm B
----------- ------------- ------------
100 elements 10.4 seconds 20.8 seconds
200 elements 41.6 seconds 41.6 seconds

And with a few more data sizes, we might get:

data size Algorithm A Algorithm B
----------- ------------- ------------
50 elements 2.6 seconds 10.4 seconds
100 elements 10.4 seconds 20.8 seconds
200 elements 41.6 seconds 41.6 seconds
400 elements 166.4 seconds 83.2 seconds

Now, this is not unrealistic data; we certainly could have two algorithms that exhibit this perfor-
mance for the given data sizes. So the question is, why do we get this strange behavior? It seems
that for some data sizes, algorithm A takes longer, but for some other sizes algorithm B takes
longer. But actually, this behavior is not strange at all, and it illustrates the important concept
we want to discuss today. Look closely at the numbers in the column for algorithm B. As the data
size doubles each time – from 50, to 100, to 200, to 400 – the time the algorithm needs to run also
doubles – from 10.4, to 20.8, to 41.6, to 83.2. Every time the data set doubles, the running time of
the algorithm also doubles.

Now, look at the numbers for algorithm A. Every time the data size is doubled, the running
time of algorithm A increases by a factor of 4.

If you were to graph the performance of these two algorithms as a function of the number of
data elements, you would get a picture with a parabola (for Algorithm A) and a straight line (for
algorithm B). That is, we would get a quadratic function and a linear function.

That is the quality we are after. What we are discussing here is the notion of order of growth
– we want to know not how fast an algorithm is on one data set, but rather, how quickly the
performance degrades as we increase the size of the data set. (We can make a similar analysis for
memory usage.) If your time vs. data size graph is a quadratic function, as with Algorithm A, then
it means every time you increase the data size by a factor of k, you increase the running time by
a factor of k2. But if your time vs. data size graph is a linear function, as with algorithm B, then
it means every time you increase the data size by a factor of k, the running time also increases by
a factor of k. This would suggest that, as our data size gets larger and larger, the running time
of the algorithm with a quadratic order of growth, would get larger much faster than the running
time of the algorithm with a linear order of growth – and indeed, we can see that exact affect in
our data above. Eventually, for large enough data sets, every algorithm with a running time whose
order of growth is quadratic, will start to take longer than an algorithm with a running time whose
order of growth is linear.

3



So, we will start by considering operations that do not depend on n. Meaning, some parts of a
function take exactly the same amount of time whether n is 10 or 1000 or 1 million. For example:

• Declaring a variable would be such an operation. Now, if we declare 100 variables, certainly
that will take longer than if we declare 1, but if (for example) we are about to search an
array of elements using a for-loop, whether we are going to search 100 elements or 1 million
elements, declaring a single variable i to use to run the for-loop iteration will take the same
amount of time either way.

• A basic operation such as comparison, addition or subtraction, a logical operation, or assign-
ment would be such an operation For example, the time it takes to write one object location
to a reference variable (i.e. assignment) does not vary based on how many assignments you
eventually do. The time to do one addition doesn’t suddenly increase because you plan on
doing 10000 additions instead of 100.

• Array access is such an operation as well. At first, you might not think so. It would seem
that to get to cell (for example) 10, the machine first needs to move through cells 0 through
9. Therefore, it would seem that accessing a later cell takes longer than accessing an earlier
one.

But, actually, this is not the case. Arrays can given you (nearly) instant access to any cell
because in memory the cells are arranged one after the other. So, it is possible to hold the
starting address inside the array reference, and then use the calculation

cell address = starting address + index * typesize

to determine the starting address of the cell you want. For example, we said that variables
of type int take up 32 bits. So, if we allocate an array of 10 ints, those ten cells take up
ten consecutive 32-bit cells in memory. The first cell starts at some address in memory – the
starting address of the array – and then the other cells are located immediately after it, one
by one. But, if you use the calculation above to get the address of the first cell, you would
get:

address of A[0] = (starting address of A) + 0 * 32 bits
= (starting address of A) + 0
= starting address of A

and we just said above that the first cell was located at the start of the array. Likewise,

address of A[2] = (starting address of A) + 2 * 32 bits
= (starting address of A) + 64

And, if A[0] is located at the starting address of the array and takes up 32 bits, it would
follow that at bit 33 of the array, we would see the start of A[1]. And since that takes up
another 32 bits, it would follow that at bit 65 of array, we would see the start of A[2]. And
that is exactly what our calculation above tells us – that 64 bits after the starting address,
A[2] begins.

In other words, we can jump immediately to cell 2 by doing one multiplication and one
addition. And in general, we can get to any cell in the array via one multiplication and one

4



addition. This is because array cells appear consecutively in memory, and so if you want
A[i], that means (because we start indexing at 0) that you have to skip over i cells at (in
this case) 32 bits each, and so one multiplication tells you how many total bits to skip over,
and one addition of that bit total to the starting address tells you where the start of A[i]
must therefore be in memory. You do not need to traverse down the cells one by one – a
single multiplication and addition will give you your array cell each time, no matter how large
the array is and no matter which particular index you are looking up. So, array cell access
time does not depend on the size of the array in any way.

Operations like those above are said to take constant time, because their running time is the same
constant value regardless of the data size. Similarly, we can say that algorithms take constant
memory if the amount of memory the algorithm uses, does not increase as the data size increases.
In general, if the amount of a resource (time, memory, whatever) that is used, is unaffected by the
growth of the data size, then we say that the order of growth of that resource usage is constant.

Similarly:

• If the increase in the usage of a resource grows proportionally to the increase in the size of
the data set, then we say that the usage of that resource by the algorithm has an order of
growth that is linear.

A linear-time algorithm is one that grows linearly as the amount of data to process grows.
For example, a loop that counts down from n to 0 in steps of 1 would be linear – each loop
pass subtracts 1 from n, so you’ll need n of those loop passes to reduce the number to 0. And
the substraction is constant-time, so you are performing constant-time work n times. The
math function c*n would be a linear function (i.e. a straight line).

That’s one way to recognize a linear function – if you are doing a constant amount of work
for each step, and the number of steps you do is proportional to n. Or in other words, you are
eliminating a constant amount of data with each constant step. Printing an array is another
example – each step, do you a constant-time amount of work to print one cell, so if you have
n cells, you need to do that constant-time amount of work n times.

So, another way to recognize a linear algorithm is to double the amount of data, or triple
it, or quadruple it. What happens to the running time? If it likewise doubles, or triples, or
quadruples, respectively, then you have a linear algorithm. This is because since you perform
constant-time work to process a constant amount of the information, if you double the amount
of information, you will be doubling the amount of times you have to run that constant-time
work.

• The order of growth of an algorithm’s usage of a particular resource is said to be quadratic
if, when the data size grows by some factor, the resource usage grows by the square of that
factor, rather than growing by that same factor as a linear algorithm would do. An example
is printing an n row, n column array to the screen. That is, if n is the number of rows of the
array and # rows == # cols, then if n doubles, we have four times as many cells and thus
four times as much printing work to do. If n triples, we’ll have 9 times as much printing work
to do.

Another way to view this is that you do a linear amount of work (such as printing an entire
row of an array) to eliminate a constant amount of our count (one row of n).

If a quadratic-time algorithm has it’s running time graphed as a function of the data size,
the graph will be a parabola – i.e. a quadratic function.

5



• The order of growth of an algorithm’s usage of a particular resource is said to be logarithmic
if an increase in the data size by some factor, increases the resource usage by the log of that
factor. For example, in the case of logarithmic running time, each constant amount of work
eliminates an entire fraction of the data, so if you double the amount of work, you are adding
only one more operation total – i.e. adding constant time to the running time (because log-
base-2 of 2, is 1). An example is binary search – you compare A[mid] to the key, first for
equality and then to see if the key is less than A[mid] – and those two comparisons together
eliminate at least half the array from having to be examined. So the next step is on at most
half the original array. And the next step is on at most half of *that* subarray, which is a
fourth of the original array. And so on. The number of steps needed to reduce the subarray
are dealing with to size 1 is going to be a logarithmic number of steps, and if you graph a
logarithmic-time algorithm’s running time as the size of the data varies, you get the graph of
a logarithmic function.

We aren’t very concerned with the lower order terms, and constant factors, and such, here.
4.332n and 1.232n+2 are still both linear functions. 0.5 (n squared) and 213.234 (n squared) + 3n
- 2 are still both quadratic functions. In fact, you can even take a quadratic function and see how
little the lower order terms start to matter as n increases:

n n^2 + 2n + 1 n^2 / (n^2 + 2n + 1)
------ ------------- --------------------
10 121 .826446
100 10,201 .980296
1000 1,002,001 .998003
10000 100,020,001 .999800
100000 10,000,200,001 .999980

The column at the far right measures what percentage the quadratic term is, as a total of the entire
expression. As you can see, even when n is 100, the quadratic term accounts for almost the entire
value of the expression. This result just gets more prominent the larger n gets. So, we don’t have to
concern ourselves too much with the particular details of the function. All we really care about is
whether the function is linear or quadratic or such. (You’ll learn some formal notation for ignoring
the lower-order terms in CS173.)

This information is useful because we can use it to learn what kind of effect increasing our data
set is likely to have. If it is taking me about an hour to search an array for an element (it’s a
big array), then I know trying to search an array about twice the size should take me about two
hours. Trying to search an array four times the size should take me about four hours. But this
has nothing to do with the operating system I am using, it has nothing to do with the processor in
my machine, and it has nothing to do with the compiler I used. The fact that the running time is
linear in the size of the array is a fundamental mathematical property of the algorithm!!.

That means our analysis is completely platform-and-software-tool independent. That is the best
way to compare algorithms, because it helps us choose between algorithms when we are still in the
process of designing our program, and because the decisions made based on such a comparison don’t
change when a new processor comes along because the result of the comparison of two algorithms
using mathematical analysis is completely independent of the processor you used. The algorithm
that is mathematically faster today will still be mathematically faster next year when processors
have doubled in speed.

Up to this point, the analysis we have done is what is known as worst-case analysis. In this kind
of analysis, we are concerned with finding out how long the algorithm takes to run in the worst

6



possible situation. For example, you are designing software to pipe extra oxygen into the space
shuttle living area for our astronauts in the event that their existing oxygen all leaks out somehow,
you’d want to make sure that the algorithm you chose to make this oxygen delivery system work
was very very fast, even in the worst case. It would do you no good if it “usually” worked quickly,
but “hit a snag” in certain situations and spent an extra hour processing before piping in oxygen.
The astronauts would die waiting for your algorithm to finish!! So, in such a case it would be
important to know the absolute longest that your algorithm could take, no matter what input the
algorithm is given. That is the idea of worst-case.

On the other hand, often what we are more concerned with is what usually occurs. We might
not like using a computer system that took 10 minutes to send a file to the printer each time we
wanted to print. But, if it usually printed right away, and only took 10 minutes every once in a
long while due to some quirk in certain types of files, then we might find that acceptable. In fact,
we might prefer that to a situation where the worst case was only 5 minutes, but that was what
“usually” happened as well. Sometimes we will prefer to focus on what “usually” happens, and
pick an algorithm that “usually” runs very fast, even if occasionally we end up with a slower case
as a result.

This notion of “usual” is known as the average case, and attempts to analyze an algorithm with
the average case in mind are known as average case analysis (in contrast to worst case analysis).

Sometimes – though not usually – we also discuss the ”best case”. ”What happens in the most
ideal situation?” is what we are asking here. We usually don’t care about this case because it’s not
interesting. We don’t *care* if things work out better than we expect, but we *do* care if they
end up worse than we expect...so while we care about what the worst we can expect to see would
be, we don’t care too much about what the possible best we can expect to see it. We care about
the worst possible situation, and also what is most likely.

7


