CS125 : Introduction to Computer Science

Lecture Notes #33
Selection Sort Analysis

(©2005, 2004 Jason Zych



Lecture 33 : Selection Sort Analysis
Consider our selection sort code:

public static int findMinimum(int[] arr, int lo, int hi) // lo <= hi
{
if (lo == hi)
return lo;
else
{
int index0fMinOfRest = findMinimum(arr, lo + 1, hi);
if (arr[lo] <= arr[index0fMinOfRest])
return lo;
else
return index0fMinOfRest;

}
}
public static void swap(int[] arr, int i, int j)
{
int temp = arr[i];
arr[i] = arr[jl;
arr[j] = temp;
}
public static void selectionSort(int[] arr, int lo, int hi)
{
if (lo < hi)
{
int index0fMin = findMinimum(arr, lo, hi);
swap(arr, lo, index0fMin);
selectionSort(arr, lo + 1, hi);
}
}

If we imagine calling selectionSort(...) from main(...), on a subarray of size n, we would
end up with n total calls to selectionSort. This is because every time we hit the recursive case of
selectionSort, we will make another selectionSort call, on a subarray one smaller in size than
before. If our subarray is initially size n when we make our first call to selectionSort, then since
each recursive call decreases the subarray size by one, we will need to make n-1 more calls before
the subarray size has reached 1. And when the subarray size reaches 1, that is the base case and
so there would not be any additional calls to selectionSort. Thus, we have our first call (the one
from main(...), plus the n-1 more calls to get down to a subarray of size 1 — making n calls total
to selectionSort.



So, what work gets done by selectionSort as we go through those n calls? Well:

You will sometimes need to evaluate the base-case condition to see if you are in a recursive
case or a base case, i.e. lo < hi

You will sometimes need to make a call to findMinimum
You will sometimes need to perform a swap

You will sometimes need to add 1 to the parameter 1o in preparation for a recursive call (i.e.
you’ll need to evaluate the recursive call arguments that need evaluating)

You will sometimes start a new method, which means creating a new method notecard and
copying the argument values onto that notecard. Along with that work, is the eventual
destruction of that notecard when that method call has completed. We are not speaking
here of all the work that goes on while you are on that notecard, nor are we speaking of the
work that gets done on elsewhere whenever you leave that notecard temporarily. We are only
speaking here, of the work involved in creating the notecard, and some time later, the work
involved in permanently destroying that notecard and returning to the previous method call.

So, how often does each of those things happen?

Each of the n calls to selectionSort(...) must check once to see if you are at the base case
or the recursive case; you’ll be at the recursive case n-1 of thoses times, and at the base case,
one of those times. But you evaluate the 1o < hi condition within selectionSort(...), n
different times in all.

You will need to make a call to findMinimum(...) every time you are in the recursive case,
so you’ll make n-1 calls to findMinimum(...) from selectionSort(...).

You will need to make a call to swap(...) every time you are in the recursive case, so you’ll
make n-1 calls to swap(...) from selectionSort(...).

You will need to add 1 to the parameter 1o in preparation for a recursive call, every time you

are in the recursive case, so you’ll add 1 to 1o, n-1 separate times from within selectionSort(. ..

And as we've already explained, you will start — and later return from — n separate calls to
selectionSort(...).

So, you evaluate the base-case condition and make/return from a method call, n times, and you
call findMinimum(...), call swap(...), and add 1 to 1o, n-1 times.

Finally, what is the order of growth of the time the computer needs to do each one of those
steps once, as the array grows bigger and bigger?



e The base-case condition check: evaluating a “less than” comparison of two integers is a
simple machine instruction and thus is constant time; if the array becomes ten times as large,
it doesn’t change the time needed to compare two integers to each other once. We will call
this constant, cpgse.

e Let’s ignore findMinimum(...) for just a moment; we’ll deal with that on its own after we
figure everything else out.

e A call to swap(...) consists of the overhead to start and return from one method, plus
four array accesses and three assignments. An array access is constant time, as we’ve already
discussed. So is an assignment. And so is method call overhead. So, the whole package adds
up to constant time for one swap operation. We will call this constant, csyap-

e Adding 1 to lo is a simple machine operation, i.e. a single addition implemented by a single
addition instruction. This does not take longer as the array grows larger, so it is constant
time. We will call this constant cyqgition-

e The method call set-up/destroy overhead will not depend on the size of the array, since no
matter how large the array is, we are only passing a single reference to the array, as an
argument. So, this cost will also be constant time. We will call this constant, cyethodeall-

And that leaves us with:

(Cbase * 1) + (Cswap * (N — 1)) + (Caddition * (1 — 1)) + (Cmethodcall * 1)
which, after running some algebra, becomes:

(Cbase + Cswap + Caddition + Cmethodcall) * M + (Cswap + Caddition) * —1

If we condense our constants by creating a new constant ¢y to be the sum of four of these constants:

CW = Chase T Cswap 1+ Caddition T Cmethodcall

and another new constant cx to be the sum of two of those terms:
CX = Cswap t Caddition

then our algebra becomes
cw kN —cx

i.e., it is a linear function.



And that brings us to findMinimum(...). What work gets done by findMinimum(...) on a
subarray of size n? well, there will be n-1 recursive calls and 1 base case. That said:

e Checking the 1o == hi condition will happen in every one of the n method calls, and it takes

constant time. Let’s call this constant, cequatity—comp-

e Every one of the n-1 recursive cases needs to add 1 to 1o. A single addition, runs in constant
time. We'll call that cagq—in— find—min-

e Every one of the n-1 recursive cases will need to perform an assignment to write the value of
the recursive acll into a variable. A single asignment, runs in constant time. We’ll call that

Cassign-

e Every one of the n-1 recursive cases will need to compare arr [1lo] to arr [index0fMinOfRest].
That is two arrays accesses and a comparison; together, that work is still constant time, since
having more array cells won’t change the time it takes to read two array cells and perform one
comparison. Each array access is constant time, and the comparison is constant time, and
three constants added together still result in a constant. We’ll call that constant c¢in—compare-

e We are actually returning a value in every case of this method. The time to evaluate the
(very simple) expression inside the return statement, and to run the return statement, is
constant; having more array cells won’t make it take longer to run one return statement.
We’ll call this constant cretyrn.

e We have to start, and eventually, return from n different findMinimum(...) calls. Each
such call/return cost is a constant, as we have already discussed. We’ll call this constant

Cfind—min—call-

And that gives us:

(Cequality—comp * TL) + (Cadd—in—find—min * (n - 1)) + (Cassign * (n - 1)) + (Cmin—compare * (TL - 1)) +
(Creturn * TL) + (Cfindfminfcall * n)

which, after running some algebra, becomes:

(Cequalityfcomp‘i‘caddfinffindfmin +CassigntCmin—compare T CreturntCfind—min—call ) *1+ (Caddfinffindfmin +

Cassign 1 cmin—compare) *—1

If we condense our constants by creating a new constant cy to be th e sum of these six of these
constants:

Cy = Cequality—comp T Cadd—in— find—min T Cassign T Cmin—compare + Creturn + Cfind—min—call
and another new constant ¢z to be the sum of three of those terms:

CZ = Cadd—in—find—min T Cassign T Cmin—compare
then our algebra becomes

cy ¥n —cy

i.e., it is a linear function.



Now, the one problem here is, even though findMinimum(...) is called once in each of the
recursive-case method calls of selectionSort(...), the “n” that the findMinimum(...) call
runs on is different each time. So to get a true assessment of the situation, we need to list the
findMinimum(...) cost of each step of selectionSort(...), and then add those costs together:

selection sort running time of findMinimum(...)

step # in this step

1 cY *n - cZ

2 cY * (n-1) - cZ

3 cY * (n-2) - cZ

4 cY * (n-3) - cZ

5 cY * (n-4) - cZ

6 cY * (n-5) - cZ

k cY *x (n-k+1) - cZ

n-4 cY * 5 - cZ

n-3 cY x 4 - cZ

n-2 cY * 3 - cZ

n-1 cY x 2 - cZ

If you add up the second column, that’s the work for findMinimum(...) over the lifetime of
the selectionSort(...) algorithm. And that sum is just:

cY * (sum of numbers from 2 through n) - (n-1)*cZ
Now, it turns out that:
n+ (n-1) + (n-2) + (n-3) + ... +4 + 3+ 2+ 1 ==n(+1)/2

(You’ll probably prove this in CS173 using mathematical induction.) So, with substitution, this
becomes:

cy *(nx(n+1)/2) = 1) —(n—1)*xcyz
which if simplified, becomes:
((ey/2) xn®) + (((ey /2) = cz) ¥ n) + ¢z

and that’s a quadratic function. Even if we add the earlier work, we get:
((ey/2) «n?) + (((ey/2) — ez + ew) * n) + (cz — ex)

which is still quadratic.



A quick way to summarize this is:

e All the work with the exception of findMinimum(...) is constant per step, and thus linear
total.

e The findMinimum(...) result is linear per step, and thus when you add the findMinimum(. . .)
costs for each step together, you see that it is quadratic.

e A linear plus a quadratic is a quadratic, i.e. the non-findMinimum(...) costs, plus the
findMinimum(...) costs, add up to a quadratic function.

Normally you can just reason through the summary like that; you don’t need to always indicate
every little constant the way we did here. But it’s useful to have gone through at least one very
detailed analysis, just so you see all the constants and how they would add up.

What we just did was the worst-case analysis, but note that it is also the average-case, and even
the best-case analysis — since findMinimum(. ..) doesn’t run any faster when the minimum is the
first cell of the array, selectionSort(...) won’t run any faster even if you pass a perfectly-sorted
array to selectionSort(...). So, there is no difference between any of the cases. All of them
have running times whose orders of growth are quadratic.



