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Lecture 5 : Boolean Expressions, Simple Conditionals, and State-
ments

Boolean Expressions

We have previously discussed the idea of an expression, and the idea that every expression
evaluates to a single value of a particular type. Up to this point, most of the expressions we have
seen have evaluated to type int or type double. There are many possible expressions you might
write, however, and not all of them evaluate to values of type int or double. For example, the
following is an expression – specifically, it’s a literal – of type boolean:

false

And, the following is another expression of type boolean (which again happens to be a literal
of the boolean type):

true

Finally, if we perform the following declaration and initialization:

boolean exampleVariable;
exampleVariable = false;

then after the above code is run, the following is also an expression of type boolean:

exampleVariable

We call those expressions boolean expressions because they are expressions that evaluate to a
value of type boolean, rather than a value of some other type.

Boolean expressions of greater complexity

Up to this point, the only boolean expressions we have been able to put into our programs are
literals of type boolean, and variables of type boolean, as in the examples we just saw. We had
the arithmetic operators to help us create more complex arithmetic expressions, but none of those
operators helped to produce boolean values – all of those operators helped perform arithmetic and,
as a result, the expressions we wrote that used those operators, evaluated to numerical values.

To form boolean expressions that are more complicated than literals or single variable names,
we will need operators that help produce boolean values, rather than the arithmetic operators,
which help produce numerical values. These operators that produce boolean values fall into two
groups:

• relational operators – two operands can be any type, but the resultant expression evaluates
to a boolean value

• logical operators – the operands need to be of type boolean, and the resultant expression
evaluates to a boolean value

We will examine both categories of operators.
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Relational Operators

The relational operators are operators that perform comparisons; we are trying to see how two
values relate to each other. Specifically, we question whether or not two values are related to
each other in a particular way. If they are indeed related to each other in that way, the expression
evaluates to true, and if the two values are not related to each other in that way, then the expression
evaluates to false.

The relational operators are:

• < (less than)

• > (greater than)

• <= (less than or equal to)

• >= (greater than or equal to)

• == (are equal)

• != (are not equal)

These, like the arithmetic operators, are binary operators, meaning they have two operands.

Do not confuse = and == when you write your code!!! This is a very common mistake. The single
equals sign means assignment; it is an action. The double equals sign means “compare for equality”;
it asks a question, “are the two operands equal, or not?”.

Using these operators, we can create boolean expressions that perform comparisons for us. For
example:

• heightOfPerson > 6.3 (evaluates to true when the variable heightOfPerson of type double
holds a value greater than 6.3, and evaluates to false otherwise)

• examScore <= 91 (evaluates to true when the variable examScore of type int holds a value
less than or equal to 91, and evaluates to false otherwise)

• grade != ’A’ (evaluates to true when the variable grade of type char holds a character
other than the capital letter ’A’, and evaluates to false otherwise)

• statusFlag == true (evaluates to true when the variable statusFlag of type boolean holds
the value true, and evaluates to false otherwise)

• time1 < time2 (assuming time1 and time2 are both of type int, evaluates to true when the
value stored in time1 is less than the value stored in time2, and evaluates to false otherwise

In general, the two operands of a relational operator tend to be of the same type. However,
since both integers and floating-point values are numbers, it is possible to compare them to each
other using the relational operators (for example, 5 <= 6.1 or 23.00002 == 23).
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Logical Operators

• As we stated earlier, relational operators have assorted types as operands, and produce values
of type boolean.

• The logical operators also produce values of type boolean; however, unlike relational opera-
tors, logical operators also must have operands of type boolean.

• Logical operators are designed to create complex boolean expressions out of simple boolean
expressions.

• The following four operators are the logical operators:

|| (or)
&& (and)
! (not)
^ (exclusive or, also called xor)

• The concepts these operators implement are very common all over computer science.

X or Y -- true if either X is true,
or Y is true, or both

X and Y -- true only if both X and Y are true
not X -- returns the opposite of X
X xor Y -- true only when X is true and Y is

false, or when Y is true and X is false;
false if X and Y are the same

Using these operators, we can create more complex boolean expressions out of simpler boolean
expressions such as boolean literals or boolean variables. For example:

• true && false (evaluates to false, since it is NOT the case that both operands are true

• true || false (evaluates to true, since AT LEAST ONE operand is true)

• true ^ false (evaluates to true, since EXACTLY ONE operand is true)

• !false (evaluates to true, which is the opposite of the operand)

If we had three variables, val1, val2, and val3, each of type boolean, and if the first two variables
held the value true and the third held the value false, then:

• val1 && val2 evaluates to true

• val2 && val3 evaluates to false

• val1 || val3 evaluates to true

• val1 ^ val2 evaluates to false

• val1 ^ val3 evaluates to true

• !val3 evaluates to true
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Using relational and logical operators together

It’s important to keep in mind the difference between the relational and logical operators:

• the relational operators produce boolean values, but the operands themselves do NOT have
to be boolean values. For example, 5 < 6.1 is a perfectly legal boolean expression; the
operands are not boolean values even though the result is

• the logical operators not only produce boolean values, but must have boolean values as
operands as well

As a result, often we have many small boolean expressions, each using a relational operator to
generate a boolean value, and then all the small boolean expressions are merged into one large
boolean expression by using the logical operators. For example, the expression:

(x >= 1) && (x <= 100) && (x % 2 == 0)

evaluates to true whenever x is an even integer between 1 and 100, inclusive. As another example,
the following expression:

(x == 5) || ((x > 10) && (x < 0))

evaluates to true only when x is 5, since the second operand of the logical OR above can never
evaluate to true.
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The short-circuiting behavior of logical AND and logical OR

The && and || operators are short-circuiting; that is, they don’t evaluate the second operand
of the operator if the answer to the overall expression is already known after evaluating the first
operand.

Example:

(x != 0) && (y/x < 70.2)

In the boolean expression above, the first thing to be evaluated is the truth or falsehood of the left
side of the && operator. Assume x is zero; if so, this expression we are trying to evaluate – namely,
x != 0 – evaluates to false. And in that case, we know what the result of the entire expression
will be! Since an AND expression is only true if both operands are true, and since we know the
value of the first operand is false, we know the entire AND expression must evaluate to false
regardless of the value of the second operand. Again, that is assuming that x is zero.

On the other hand, if x held a non-zero value, then the first expression – the x != 0 expression
– would evaluate to true. In that case, the AND expression could still evaluate to true or to
false, depending on the result of the evaluation of the second operand. So, because of that, we
must evaluate the second operand (y/x > 70.2) to know for sure what the result of the AND
expression is.

This feature might be helpful for two reasons. First of all, any work that we don’t have to do,
is time we save – so if the machine can avoid having to evaluate the second operand, then that
means your program runs a little bit faster since there is less work to do. Also, in the expression
above, we don’t want to evaluate y/x if x is zero, since the subsequent division-by-zero operation
would crash our program. But since the short-circuit property of the && operator prevents that
second expression from being evaluated when x is zero, our program is safe! So in addition to
saving time, the short-circuiting feature can be used as we used it in the example above, to keep
us from evaluting a particular expression such as y/x if it would be dangerous to do so.

Likewise, for the OR operator, if the first operand evaluates to true, the second operand won’t
be evaluated, since the first operand being true means the entire expression must be true regardless
of the value of the second operand.

Note that XOR has no short-circuiting ability since you always need to know the values of
both operands in order to evaluate the XOR, and NOT has no short-circuiting ability since there
is only one operand to begin with.
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Basing results on comparisons – the conditional

Up to this point, we’ve only listed instructions one after the other. But, just listing instructions is
not enough!

What we do might depend on certain conditions being true.

ex.: Read a student score, print out whether each has passed (better than 60) or failed (60 or
worse).

Read score, call it examScore
If examScore is greater than 60,

print out that the student has passed
Otherwise examScore must be <= 60.

In this case, print out that
the student has failed.

In this case, we don’t always print “passed” and don’t always print “failed”. In fact, each time
we read an exam score, we perform exactly one of those – we will always print either “passed” or
“failed”, but never both. How can we make this work?

What we need is a new kind of language statement – the conditional, which will run code
“conditionally”.

The if statement

Today we are introducing a new kind of statement – the if statement. The form for this
statement is as follows:

if (condition)
statement;

• condition must be a boolean expression

• statement is a statement of some kind

• The statement is only executed if the condition evaluates to true. If the condition
evaluates to false instead, then, the statement is skipped over, and the next line of code
that executes is whatever is after the if statement.

Example:

if (grade > 60)
System.out.println("Passed!");

System.out.println("Done!");

If student’s grade is greater than 60, then both lines get printed. If student’s grade is not greater
than 60, than only "Done!" gets printed. The line that prints "Done! has nothing to do with the
if statement, so it gets run regardless of whether the condition is true or false. (Note that we
indent the statement that is run conditionally by the if statement – that is the proper style.)
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Statements

Up to this point, we have used the term “statement” to refer to any one of the following:

• a variable declaration statement

• an assignment statement

• a System.out.println statement

• a System.out.print statement

Furthermore, if you want to get technical, the Keyboard.readInt(), Keyboard.readChar(), and
Keyboard.readDouble() expressions are also statements. Those statements evaluate to values, so
they are also expressions, as we discussed before. But we can put them in the “statement” category,
too, since they accomplish work on their own, whether we do something with the returned value
or not.

So, it’s all fine and good to make a list of things we call “statements”, but what is a statement?
Well, one vague way to define the term is to say that a statement is one complete unit of work. For
example, the expressions 5 - 3 * 2 or "Sum is : " + 120 evaluate to single values, but what do
we do with those values? It is not until we put the values inside statements – perhaps by writing the
value to a variable (via an assignment statement) or perhaps by printing the value to the screen (via
a System.out.println statement) – that we’ve made meaningful use of the expression’s value. The
expression, on its own, simply calculates the value and then ignores it. The fact that an expression
is not automatically a statement, is why the following will compile:

public class Example1 {
public static void main(String[] args) {

System.out.println(2 + 3 + " is the sum.");
}

}

but the following two examples will not compile:

public class Example2 {
public static void main(String[] args) {

2 + 3 + " is the sum."
}

}

public class Example2 {
public static void main(String[] args) {

2 + 3 + " is the sum."; // <-- adding a ; doesn’t make a difference
}

}

You can’t just toss 2 + 3 + " is the sum." into your program; you need to do something
with the result of that expression. (If you run Keyboard.readInt(), you obtain a piece of data
from the user, so in that case, you have indeed done something, even if you don’t use the value
you’ve inputted – you’ve taken in an input value from the user so that that input value won’t be
re-entered the next time your program wants input.)
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However, we can come up with a more precise definition of “statement” than “one complete
unit of work”. Instead, our definition of “statement” will be: a statement is anything we refer to
as a statement, i.e. anything that is on our list of things we call statements. We started our list at
the top of the previous page; all those statements accomplished different sorts of things, but they
were all on the list, so they were all statements.

This widely-ranging definition of “statement” is a good thing! It means that in any code
construct where we say a “statement” should go, we can substitute anything we want, as long as
it is called a “statement”. For example, we have said this is a statement:

if (grade > 60)
System.out.println("Passed!");

So, if it is a statement, then why not put it inside an if statement, since any statement can go
inside an if statement? That is, the grammar of an if-statement was:

if (condition)
statement;

so if the statement is the conditional we listed above, and the condition is daysInAttendance > 200,
then we get the following:

if (daysInAttendance > 200)
if (grade > 60)

System.out.println("Passed!");

That is legal code! Since the grammar of a conditional had a statement within it, we can put any
statement we want there – even another conditional! In a sense, it is as if the simple statements,
such as assignments, declarations, and print statements, are primitives – and then statements such
as the if statement, that can contain other statements within itself, are the means by which we
create compositions. This is not so different from expressions, and the way literals and variables
were primitive expressions, while more complex expressions were built from simpler expressions.
And just as we made use of those expression rules to build expressions that were as complex as we
needed, likewise we can make use of statements-that-hold-other-statements, to create statements
of whatever complexity we need.

We will explore this idea further in the next lecture.
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