

Outline

• Overview

• Theoretical background

• Parallel computing systems

• Parallel programming models

• MPI/OpenMP examples

OVERVIEW

What is Parallel Computing?
• Parallel computing: use of multiple processors or

computers working together on a common task.
– Each processor works on its section of the problem

– Processors can exchange information

Grid of Problem to be solved

CPU #1 works on this area

of the problem

CPU #3 works on this area

of the problem

 CPU #4 works on this area

of the problem

 CPU #2 works on this area

of the problem

y

x

exchange

exchange

exchange

exchange

Why Do Parallel Computing?

• Limits of single CPU computing
– performance

– available memory

• Parallel computing allows one to:
– solve problems that don’t fit on a single CPU

– solve problems that can’t be solved in a reasonable time

• We can solve…
– larger problems

– the same problem faster

– more cases

• All computers are parallel these days, even your iphone 4S has
two cores…

THEORETICAL BACKGROUND

Speedup & Parallel Efficiency

• Speedup:

– p = # of processors

– Ts = execution time of the
sequential algorithm

– Tp = execution time of the parallel
algorithm with p processors

– Sp= P (linear speedup: ideal)

• Parallel efficiency

Sp =
Ts

Tp

E p =
Sp

p
=
Ts

pTp

Sp

of processors

linear speedup

super-linear speedup (wonderful)

sub-linear speedup (common)

Limits of Parallel Computing

• Theoretical Upper Limits

– Amdahl’s Law

– Gustafson’s Law

• Practical Limits

– Load balancing

– Non-computational sections

• Other Considerations

– time to re-write code

Amdahl’s Law

• All parallel programs contain:

– parallel sections (we hope!)

– serial sections (we despair!)

• Serial sections limit the parallel effectiveness

• Amdahl’s Law states this formally
– Effect of multiple processors on speed up

where

• fs = serial fraction of code
• fp = parallel fraction of code
• P = number of processors

SP º
TS

TP
£

1

fs +
fp

P
Example:

fs = 0.5, fp = 0.5, P = 2
Sp, max = 1 / (0.5 + 0.25) = 1.333

Amdahl’s Law

Practical Limits: Amdahl’s Law vs. Reality

• In reality, the situation is even worse than predicted by Amdahl’s
Law due to:
– Load balancing (waiting)
– Scheduling (shared processors or memory)
– Cost of Communications
– I/O

Sp

Gustafson’s Law

• Effect of multiple processors on run time of a problem
with a fixed amount of parallel work per processor.

– a is the fraction of non-parallelized code where the parallel work
per processor is fixed (not the same as fp from Amdahl’s)

– P is the number of processors

SP £ P -a × P -1()

Comparison of Amdahl and Gustafson

Amdahl : fixed work Gustafson : fixed work per processor

cpus 1 2 4 cpus 1 2 4

S £
1

fs + fp / N

S2 £
1

0.5+ 0.5 / 2
=1.33

S4 £
1

0.5+ 0.5 / 4
=1.6

Sp £ P - a× (P -1)

S2 £ 2 - 0.5(2 -1) =1.5

S4 £ 4 + 0.5 4 -1() = 2.5

5.0pf

a = 0.5

Scaling: Strong vs. Weak

• We want to know how quickly we can complete analysis on a
particular data set by increasing the PE count
– Amdahl’s Law

– Known as “strong scaling”

• We want to know if we can analyze more data in
approximately the same amount of time by increasing the PE
count
– Gustafson’s Law

– Known as “weak scaling”

PARALLEL SYSTEMS

“Old school” hardware classification

SISD No parallelism in either instruction or data streams (mainframes)

SIMD Exploit data parallelism (stream processors, GPUs)

MISD Multiple instructions operating on the same data stream. Unusual,

mostly for fault-tolerance purposes (space shuttle flight computer)

MIMD Multiple instructions operating independently on multiple data

streams (most modern general purpose computers, head nodes)

Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple Data SIMD MIMD

NOTE: GPU references frequently refer to
SIMT, or single instruction multiple thread

Hardware in parallel computing

Memory access

• Shared memory
– SGI Altix

– IBM Power series nodes

• Distributed memory
– Uniprocessor clusters

• Hybrid/Multi-processor
clusters (Ranger, Lonestar)

• Flash based (e.g. Gordon)

Processor type
• Single core CPU

– Intel Xeon (Prestonia, Wallatin)
– AMD Opteron (Sledgehammer, Venus)
– IBM POWER (3, 4)

• Multi-core CPU (since 2005)
– Intel Xeon (Paxville, Woodcrest,

Harpertown, Westmere, Sandy Bridge…)
– AMD Opteron (Barcelona, Shanghai,

Istanbul,…)
– IBM POWER (5, 6…)
– Fujitsu SPARC64 VIIIfx (8 cores)

• Accelerators
– GPGPU
– MIC

Shared and distributed memory

• All processors have access to a

pool of shared memory

• Access times vary from CPU to
CPU in NUMA systems

• Example: SGI Altix, IBM P5
nodes

• Memory is local to each
processor

• Data exchange by message
passing over a network

• Example: Clusters with single-
socket blades

P

Memory

P P P P

P P P P P

M M M M M

Network

Hybrid systems

• A limited number, N, of processors have access to a common pool
of shared memory

• To use more than N processors requires data exchange over a
network

• Example: Cluster with multi-socket blades

Memory

Network

Memory Memory Memory Memory

Multi-core systems

• Extension of hybrid model

• Communication details increasingly complex
– Cache access
– Main memory access
– Quick Path / Hyper Transport socket connections
– Node to node connection via network

Memory

Network

Memory Memory Memory Memory

Accelerated (GPGPU and MIC) Systems

• Calculations made in both CPU and accelerator

• Provide abundance of low-cost flops

• Typically communicate over PCI-e bus

• Load balancing critical for performance

Network

M I C

Memory

G P U

Memory

M I C

Memory

G P U

Memory

Accelerated (GPGPU and MIC) Systems

GPGPU (general purpose graphical processing unit)

• Derived from graphics hardware

• Requires a new programming model and specific

libraries and compilers (CUDA, OpenCL)

• Newer GPUs support IEEE 754-2008 floating point
standard

• Does not support flow control (handled by host

thread)

Network

M I C

Memory

G P U

Memory

M I C

Memory

G P U

Memory

MIC (Many Integrated Core)

• Derived from traditional CPU hardware

• Based on x86 instruction set

• Supports multiple programming models

(OpenMP, MPI, OpenCL)

• Flow control can be handled on accelerator

Rendering a frame: Canonical example
of a GPU task

• Single instruction: “Given a model and set of
scene parameters…”

• Multiple data: Evenly spaced pixel locations (xi,yi)

• Output: “What are my red/green/blue/alpha
values at (xi, yi)?”

• The first uses of GPUs as accelerators were
performed by posing physics problems as if they
were rendering problems!

Calculation of a free volume index
over an evenly spaced set of points
in a simulated sample of
polydimethylsiloxane (PDMS)

• Relates directly to chemical

potential via Widom insertion
formalism of statistical
mechanics

• Defined for all space
• Readily computable on GPU

because of parallel nature of
domain decomposition

• Generates voxel data which
lends itself to spatial/shape
analysis

A GPGPU example:

PROGRAMMING MODELS

Types of parallelism

• Data Parallelism
– Each processor performs the same task on

different data (remember SIMD, MIMD)

• Task Parallelism
– Each processor performs a different task on the

same data (remember MISD, MIMD)

• Many applications incorporate both

Implementation: Single Program
Multiple Data

• Dominant programming model for shared and distributed
memory machines

• One source code is written

• Code can have conditional execution based on which
processor is executing the copy

• All copies of code start simultaneously and communicate and
synchronize with each other periodically

SPMD Model

program.c
(source)

processor 3 processor 2 processor 1 processor 0

program program program program

Communication layer

process 3 process 2 process 1 process 0

Data Parallel Programming Example

• One code will run on 2 CPUs

• Program has array of data to be operated on by 2 CPUs so array is split
into two parts.

program:

…

if CPU=a then

 low_limit=1

 upper_limit=50

elseif CPU=b then

 low_limit=51

 upper_limit=100

end if

do I = low_limit,

upper_limit

 work on A(I)

end do

...

end program

CPU A CPU B

program:

…

low_limit=1

upper_limit=50

do I= low_limit,

upper_limit

 work on A(I)

end do

…

end program

program:

…

low_limit=51

upper_limit=100

do I= low_limit,

upper_limit

 work on A(I)

end do

…

end program

Task Parallel Programming Example

• One code will run on 2 CPUs

• Program has 2 tasks (a and b) to be done by 2 CPUs

program.f:

…

initialize

...

if CPU=a then

 do task a

elseif CPU=b then

 do task b

end if

….

end program

CPU A CPU B

program.f:

…

initialize

…

do task a

…

end program

program.f:

…

initialize

…

do task b

…

end program

Shared Memory Programming: pthreads

• Shared memory systems (SMPs, ccNUMAs)
have a single address space

• applications can be developed in which loop
iterations (with no dependencies) are
executed by different processors

• Threads are ‘lightweight processes’ (same PID)

• Allows ‘MIMD’ codes to execute in shared
address space

Shared Memory Programming: OpenMP

• Built on top of pthreads

• shared memory codes are mostly data
parallel, ‘SIMD’ kinds of codes

• OpenMP is a standard for shared memory
programming (compiler directives)

• Vendors offer native compiler directives

Accessing Shared Variables

• If multiple processors want to write to a
shared variable at the same time, there could
be conflicts :
– Process 1 and 2
– read X
– compute X+1
– write X

• Programmer, language, and/or architecture
must provide ways of resolving conflicts
(mutexes and semaphores)

Shared variable X

in memory

X+1 in proc1 X+1 in proc2

OpenMP Example #1: Parallel Loop

!$OMP PARALLEL DO

 do i=1,128

 b(i) = a(i) + c(i)

 end do

!$OMP END PARALLEL DO

• The first directive specifies that the loop immediately following should be
executed in parallel.

• The second directive specifies the end of the parallel section (optional).

• For codes that spend the majority of their time executing the content of
simple loops, the PARALLEL DO directive can result in significant parallel
performance.

OpenMP Example #2: Private Variables

!$OMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(I,TEMP)

do I=1,N

 TEMP = A(I)/B(I)

 C(I) = TEMP + SQRT(TEMP)

end do

!$OMP END PARALLEL DO

• In this loop, each processor needs its own private copy of the variable
TEMP.

• If TEMP were shared, the result would be unpredictable since multiple
processors would be writing to the same memory location.

Distributed Memory Programming: MPI

• Distributed memory systems have separate address spaces
for each processor

• Local memory accessed faster than remote memory

• Data must be manually decomposed

• MPI is the de facto standard for distributed memory
programming (library of subprogram calls)

• Vendors typically have native libraries such as SHMEM
(T3E) and LAPI (IBM)

Data Decomposition
• For distributed memory systems, the ‘whole’ grid is

decomposed to the individual nodes
– Each node works on its section of the problem

– Nodes can exchange information

Grid of Problem to be solved

Node #1 works on this area

of the problem

Node #3 works on this area

of the problem

 Node #4 works on this area

of the problem

 Node #2 works on this area

of the problem

y

x

exchange

exchange

exchange

exchange

Typical Data Decomposition
• Example: integrate 2-D propagation problem:

2

2

2

2

y
B

x
D

t 













2

1,,1,

2

,1,,1,

1

, 22

y

fff
B

x

fff
D

t

ff n

ji

n

ji

n

ji

n

ji

n

ji

n

ji

n

ji

n

ji













 



Starting partial
differential equation:

Finite Difference
Approximation:

PE #0 PE #1 PE #2

PE #4 PE #5 PE #6

PE #3

PE #7

y

x

MPI Example #1
• Every MPI program needs these:

#include “mpi.h”

int main(int argc, char *argv[])

{

 int nPEs, iam;

 /* Initialize MPI */

 ierr = MPI_Init(&argc, &argv);

 /* How many total PEs are there */

 ierr = MPI_Comm_size(MPI_COMM_WORLD, &nPEs);

 /* What node am I (what is my rank?) */

 ierr = MPI_Comm_rank(MPI_COMM_WORLD, &iam);

 ...

 ierr = MPI_Finalize();

}

MPI Example #2

#include “mpi.h”

int main(int argc, char *argv[])

{

 int numprocs, myid;

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 /* print out my rank and this run's PE size */

 printf("Hello from %d of %d\n", myid, numprocs);

 MPI_Finalize();

}

MPI: Sends and Receives

• MPI programs must send and receive data between the
processors (communication)

• The most basic calls in MPI (besides the three initialization
and one finalization calls) are:
– MPI_Send

– MPI_Recv

• These calls are blocking: the source processor issuing the
send/receive cannot move to the next statement until the
target processor issues the matching receive/send.

Message Passing Communication
• Processes in message passing programs communicate by

passing messages

• Basic message passing primitives: MPI_CHAR, MPI_SHORT, …

• Send (parameters list)

• Receive (parameter list)

• Parameters depend on the library used

• Barriers

A B

MPI Example #3: Send/Receive
#include “mpi.h”

int main(int argc,char *argv[])
{
 int numprocs,myid,tag,source,destination,count,buffer;
 MPI_Status status;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 tag=1234;
 source=0;
 destination=1;
 count=1;

 if(myid == source){
 buffer=5678;
 MPI_Send(&buffer,count,MPI_INT,destination,tag,MPI_COMM_WORLD);
 printf("processor %d sent %d\n",myid,buffer);
 }
 if(myid == destination){
 MPI_Recv(&buffer,count,MPI_INT,source,tag,MPI_COMM_WORLD,&status);
 printf("processor %d got %d\n",myid,buffer);
 }
 MPI_Finalize();
}

G Carl Evans

Final Thoughts

• These are exciting and turbulent times in HPC.

• Systems with multiple shared memory nodes and
multiple cores per node are the norm.

• Accelerators are rapidly gaining acceptance.

• Going forward, the most practical programming
paradigms to learn are:

– Pure MPI

– MPI plus multithreading (OpenMP or pthreads)

– Accelerator models (MPI or multithreading for
MIC, CUDA or OpenCL for GPU)

