
1

CS	126:	Software	Design	Studio

Prof.	G.	Carl	Evans
and

A	huge	cast	of	characters	(Website)

Slides	adapted	from	Craig	Zilles

2

What	is	this	class	about?
¢ My	goals	for	this	class:

1. Improve	your	programming	productivity	by	>=	3x
2. Build	your	self-sufficiency	as	a	programmer
3. Introduce	you	to	modern	computing	environments
4. Provide	skills	for	getting	internships	/	doing	hack-a-thons
5. Have	you	build	a	large	project	relating	to	your	interests

3

What	is	this	class	NOT	about?
¢ This	is	NOT	a	‘Computer	Science’	class

§ This	is	a	programming	class
§ (i.e.,	don’t	hate	CS	even	if	you	hate	this	class)

¢ But,	this	class	will	help	you	in	your	‘Computer	Science’	classes
§ Alleviate	the	low-level	programming	struggles
§ You	can	focus	your	attention	on	the	big	ideas!

4

What	is	Programming?	(two	views)
“The programmer, like the poet, works only slightly removed from pure
thought-stuff. He builds his castles in the air, from air, creating by exertion of
the imagination. Few media of creation are so flexible, so easy to polish and
rework, so readily capable of realizing grand conceptual structures....
Yet the program construct, unlike the poet's words, is real in the sense that it
moves and works, producing visible outputs separate from the construct itself.
[…] The magic of myth and legend has come true in our time. One types the
correct incantation on a keyboard, and a display screen comes to life, showing
things that never were nor could be.” — Fred Brooks

Pragmatically, programming is the tool that computer scientists use to collect,
analyze, and visualize data, automate tasks, make products, mechanically
prove theorems, and build tools. As lawyers write prose and architects build
models, programming is the underlying tool of the computer scientist.

5

Programming	is	unique	
“The gap between the best software engineering practice and the
average practice is very wide—perhaps wider than in any other
engineering discipline” — Fred Brooks

“The original study that found huge variations in individual
programming productivity … studied professional programmers
with an average of 7 years' experience and found that the ratio of
initial coding time between the best and worst programmers was
about 20 to 1; the ratio of debugging times over 25 to 1; of
program size 5 to 1; and of program execution speed about 10 to
1.” — Steve McConnell

6

How	much	programming	experience	do	you	have?

A.	Six	months	or	less
B.	Six	to	12	months
C.	One	to	two	years
D.	Two	to	six	years
E.	More	than	six	years

7

How	do	you	get	better	at	something?

8

Course	Textbook	(part	1)
A	solid,	concise	book	on	
software	construction.

Less	than	$30	on	Amazon	prime		
(or	$16	for	a	Kindle	version).

Check	out	reviews	on	Amazon	
about	how	good	this	book	is.

Available	digitally	on	campus	
through	the	library.

9

Code	Reviews
¢ Groups	of	<=6	students	+	1	moderator
¢ Meets	2	hours/week	(arranged	time)
¢ Present	code	that	you’ve	written	in	the	past	week

§ Get	feedback	on	your	style	&	design
§ See	other	possible	designs	(pick	up	ideas)
§ Practice	presentation	&	verbal	communication	skills

10

Meta-cognition	(or	Metacognitive	Regulation)

“Regulation	of	cognition"	contains	three	essential	skills:
¢ Planning:	appropriate	selection	of	strategies	and	the	correct	

allocation	of	resources	that	affect	task	performance.
¢ Monitoring:	refers	to	one's	awareness	of	comprehension	and	

task	performance
¢ Evaluating:	refers	to	appraising	the	final	product	of	a	task	and	

the	efficiency	at	which	the	task	was	performed.	This	can	
include	re-evaluating	strategies	that	were	used.

11

Learning	to	help	yourself

¢ Very	few	programs	are	written	completely	from	scratch.
§ Most	rely	heavily	on	libraries,	APIs,	and	frameworks

¢ Existing	code	is	person-made	and	arbitrary
§ No	one	inherently	knows	how	to	interface	to	it
§ Need	to	be	able	to	read	documentation

§ Google	and	StackOverflow are	your	friend

¢ In	this	class,	we’ll	encourage	you	to	help	yourself
§ Teach	a	person	to	fish,	and	you	feed	them	for	a	lifetime.

12

What	are	we	going	to	do	this	semester?
¢ style,	refactoring,	code	reviews

§ layout,	commenting,	variable	usage	and	naming,	control	
structures

¢ test-driven	development,	testing	frameworks,	coverage
§ defensive	programming,	assertions,	exception	handling

¢ design,	design	of	routines,	object-oriented	frameworks
§ design	patterns,	event-driven	programming,	MVC

¢ tools:	IDEs,	source	control,	debugging,	logging,	Unix
¢ user	interface	design,	prototyping,	user	testing
¢ client-server	network	programming,	JSON,	SQL

13

C++	and	openFrameworks

14

Course	Infrastructure	(1)

¢ Java	is	a	relatively	verbose	language
¢ Having	a	good	tool	accelerates	routine	drudgery.
¢ IntelliJ	IDEA	is	a	really	good	tool

15

Course	Infrastructure	(2)
¢ Version	control	systems	(VCS):

§ A	practice	that	tracks	and	provides	control	over	changes	to	
a	collection	of	documents/files.

§ Allows	access	to	any	prior	version.
§ Facilitates	collaboration	between	multiple	developers.

¢ Git:		an	industry-standard	distributed	VCS
§ You’ll	use	this	for	developing/submitting	your	code.
§ Very	sophisticated	tool;	we’ll	use	a	subset	of	features

¢ Subversion	(SVN):	an	older,	simpler	VCS
§ We’ll	use	this	to	pass	information	back	to	you

16

VCS	concepts
¢ Repository:		A	collection	of	files	under	version	control,	along	

with	all	of	their	previous	(committed)	versions.

¢ Checkout	(verb):	To	make	a	working	copy	on	your	local	
machine	for	editing/testing.

¢ Commit	(verb):		To	take	a	set	of	file	modifications	and	add	
them	to	the	repository,	usually	with	a	descriptive	message.

¢ Commit	(noun):	The	set	of	changes	(a	“diff”)	along	with	its	
descriptive	message	resulting	from	a	commit	(verb).

17

Git concepts
¢ Local	repository	vs.	remote	repository:

§ Git lets	you	have	as	multiple	related	repositories	on	
different	machines.

¢ Clone:	
§ Make	a	local	repository	from	a	remote	repository.

¢ Staged:	
§ Files	whose	changes	are	to	be	committed.

¢ Push:
§ Copying	local	commit	to	remote	repository.

¢ Pull:
§ Bringing	changes	from	remote	to	local	repository.		
Implemented	by	a	“fetch”	then	a	“merge”.

18

Version	Control,	why	do	we	care?
Single	Developer:
¢ Most	things	worth	doing	are	too	big	to	do	all	at	once.
¢ Break	large	projects	into	small	steps:

§ Design,	implement,	test,	debug,	commit each	step.
§ Have	access	to	every	working	version	through	VCS
§ If	things	stop	working:

§ Can	inspect	the	differences	between	current	and	last	working	
versions.

§ Can	always	revert	back	to	last	working	version	(e.g.,	throw	away	
changes)

Multiple	developers:
¢ Coordinate	edits	to	a	shared	set	of	files

19

Things	to	do
¢ join	UIUC	CS	126	on	piazza.com
¢ get	an	iClicker registered	at	http://iclicker.com
¢ get	a	GitHub	account
¢ install	IntelliJ	on	to	your	laptop	(students	can	get	the	

Ultimate	version	for	free)
¢ clone	an	Introduction	repo	and	edit	it	to	put	in	your	netid:	

https://classroom.github.com/a/9B0CTBDF
¢ review	course	policies:	

https://courses.engr.illinois.edu/cs126

20

Java

