
1

Naming	&	Code	Reviews

Slides	adapted	from	Craig	Zilles



2

Style	&	Design
¢ A	key	focus	of	this	class	is	developing	your	sense	of	style	and	

design	with	respect	to	code.

¢ Why	do	we	care?



3

What	metric	should	we	use?
¢ Book	proposes:

§ Code	should	be	written	to	minimize	the	time	it	would	take	
for	someone	else	to	understand	it.



4

Names	(variables,	functions,	tests,	etc.)
¢ Why	are	names	important?



5

Which	is	NOT a	book	recommendation
A)	it	is	better	to	be	clear/precise	than	cute
B)	prefer	concrete	names	over	abstract	names
C)	for	measurements,	encode	units	into	variable’s	name
D)	you	should	never	use	i,	j,	or	k	for	loop	variable	names
E)	throw	out	unneeded	words



6

Boolean	Variables
¢ Which	name	is	most	problematic	for	a	Boolean	variable

A)	done
B)	notFound
C)	processingComplete
D)	isValidFormat
E)	hasChildren



7

What	is	the	best	name	length?
¢ Software	engineering	researchers	did	a	study	and	found	that	

the	effort	to	debug	a	program	was	minimized	when	variables	
had	names	that	averaged	in	a	given	size	range.			Can	you	
guess	what	the	range	was?

A)	1-8	characters
B)	5-12	characters
C)	10-16	characters
D)	15-22	characters
E)	18-30	characters



8

Should	scope	affect	variable	name	length?

A)	Yes.	Variables	with	larger	scope	should	have	longer	variable	
names.
B)	No.	Variables	should	be	named	independent	of	their	scope.
C)	Yes.	Variables	with	larger	scope	should	have	shorter	variable	
names.



9

Magic	Numbers
¢ Generally,	you	shouldn’t	have	hard-coded	numbers	in	your	

code	(what	are	called	“magic	numbers”)	other	than	0	and	1.

//	check	if	password	is	too	short
if	(password.length()	<	5)	{	…



10

CS	126	Style	Guide	(for	Java)
¢ Google	Style-guide:

§ Real
§ Good	style
§ Sets	clear	expectations	to	students	and	moderators
§ One	instance	of	good	style,	not	the	only	one

¢ https://google.github.io/styleguide/javaguide.html



11

More	about	tests	and	re-factoring



12

A	few	words	about	Code	Reviews



13

Code	Reviews	start	this	week!	

¢ Check	your	SVN	for	a	file:		moderator_assignment
¢ Bring	a	laptop.

§ And	display	adapters	(to	VGA	or	HDMI)	as	necessary
¢ Be	ready	to	present	your	code.



14

Your	job	when	presenting
¢ Think	about	your	presentation	before	your	code	review

§ What	are	the	most	important	things	to	show?
§ What	is	the	logical	order	to	show	things?
§ How	much	time	should	be	spent	on	each	thing?

¢ Be	aware	of	your	audience	(moderator	AND	fellow	students)
§ Speaking	loud	enough	and	clearly
§ Appropriate	pacing
§ Observe	audience	and	adjust	as	necessary



15

Your	job	when	presenting	(2)
¢ Manage	time:			be	prepared!

§ 2	hours	/	6	students	=	20	minutes
§ Need	time	to	present	and	for	feedback	/	questions

¢ Focus	on	what	is	important:
§ What	is	on	the	rubric?		Be	sure	to	show	those	things.
§ Focus	on	what	is	new	in	each	assignment.
§ What	did	you	need	to	improve	from	last	time?		Show	fixed.

¢ View	this	as	a	learning	opportunity,	not	an	evaluation:
§ Try	not	to	be	defensive;	take	suggestions	to	heart.

§ But	don’t	overweight	one-off	comments.		‘Grain	of	salt’		

§ I	know	this	is	hard.



16

Your	job	when	others	are	presenting
¢ Pay	attention.		Participate!		Respectfully.
¢ What	can	you	learn	from	their	implementation?

§ What	idea	is	in	their	code	that	you	could	later	in	life?
§ It	is	okay	to	ask	questions.

§ Why	did	you	choose	to	use	recursion	over	iteration	in	function	X?

¢ What	feedback	can	you	give	to	your	fellow	students?
§ Make	sure	that	your	intention	is	to	help	them.
§ Be	modest.		Not	everything	you	think	is	true	may	be	true

§ Learning	can	happen	when	others	disagree	with	your	suggestions

¢ Be	sure	to	respect	their	time.



17

How	to	give	constructive	criticism?

¢ Intermix	criticism	within	praise:
§ “I	think	your	function	names	are	really	good,	but	your	global	
variable	names	seem	too	brief	to	provide	enough	context.”

§ “I	like	your	structure,	but	the	2nd loop	seems	overly	complex.”

¢ Focus	on	the	code	not	the	person:
§ NO “You	always	write	loops	that	are	too	large”
§ YES “I	feel	that	this	loop	is	larger	than	it	has	to	be”

¢ Use	first	person	statements:		state	as	opinions	not	facts.



18

How	to	give	constructive	criticism?	(cont.)

¢ Be	specific	with	your	feedback:
§ NO “I	think	the	names	of	your	variables	are	bad”
§ YES “The	variable	name	‘temp’	doesn’t	show	its	intent”

¢ Give	actionable	feedback:
§ “I	would	suggest	simplifying	the	code	by	pulling	out	lines	42-
57	into	its	own	function	that	is	called	from	the	loop.”



19

Everyone	in	this	class	was	admitted	to	CS

¢ Your	(and	others’s)	admission	was	not	a	mistake

¢ You	all	are	expected	to	graduate	and	succeed
§ This	will	take	work	on	your	part,	but	you	can	do	this.



20

Computing	Needs	Diversity
¢ Computing	is	going	to	be	deployed	in	society	in	every	aspect	

of	industrial	and	personal	needs.
§ We	need	people	from	every	part	of	society	to	make	sure	it	
is	done	in	a	way	that	meets	all	of	society’s	needs

¢ Diverse	groups	are	more	innovative.
§ https://www.scientificamerican.com/article/how-diversity-
makes-us-smarter/

§ “This	is	not	only	because	people	with	different	backgrounds	
bring	new	information.	Simply	interacting	with	individuals	
who	are	different	forces	group	members	to	prepare	better,	
to	anticipate	alternative	viewpoints	and	to	expect	that	
reaching	consensus	will	take	effort.”



21

Expectations	in	CS	
¢ Don’t	make	discriminatory	remarks.

§ Discrimination	is	about	putting	people	down	and	keeping	
them	down	so	we	can	more	safely	exploit	them	in	future.	Or,	
so	they	will	not	compete	with	us.	Or,	simply	to	feel	superior.

§ There	is	no	excuse	for	it.
§ Not	even	in	“private”;	don’t	normalize	this	behavior.

¢ Call	out	other	people	when	they	make	discriminatory	remarks
§ Make	it	clear	to	others	that	such	behavior	is	unacceptable.
§ Especially	if	you	are	not	part	of	the	targeted	group.
§ Be	a	positive	force.



22

Link	to	CS196	Slides
¢ https://docs.google.com/presentation/d/1f2s1mysMlrpd

EMVNDF_Y6NjqdWZs-
H4r5PQ3uBPG1oM/edit#slide=id.g165324e2d7_2_102


