
1

Documenting	code	&	Javadoc
Defensive	Programming	&	Assert

Slides	adapted	from	Craig	Zilles



2

Most	important	reason	to	comment

A)	To	summarize	the	code
B)	To	explain	how	the	code	works
C)	To	mark	locations	that	need	further	work
D)	To	help	the	reader	know	as	much	as	the	writer	did
E)	To	store	non-code	information	with	the	code



3

Ideal	Comment	Density
¢ Software	engineering	studies	have	studied	what	

commenting	frequency	makes	the	code	most	readable.	
Guess	what	was	the	ideal	comment	density?

A)	1	comment	per	10	statements
B)	1	comment	per	5	statements
C)	1	comment	per	3	statements
D)	1	comment	per	2	statements
E)	1	comment	per	statement



4

How	could	more	comments	be	bad?



5

The	best	documentation	is	…

code	that	doesn’t	need	comments	to	be	understood

¢ Write	straightforward	code
¢ Use	expressive	variable	and	function	names
¢ Follow	common	conventions

§ getSomething()
§ isEmpty()



6

Marking	end	of	blocks	with	comments

if	(condition)	{
callSomeFunction(with,	some,	arguments);

}		//	if

Is	this	appropriate	commenting?
A)	Yes
B)	No



7

Javadoc example	(what	could	be	improved?)
/**
* Test the primality of a number.  See:  https://en.wikipedia.org/wiki/Prime_number
*
* @param candidate  the number to be tested for primality
* @return true if the candidate is prime, false otherwise
*/

public static boolean isPrime(int candidate) {
// Negative numbers, 0, 1, and even numbers (other than 2) are not prime
if (candidate < 2 ||

((candidate % 2 == 0) && (candidate != 2))) {
return false;

}

// If a number can be evenly divided by a number other than 1 and itself, 
// then it is not prime. It is sufficient to test using only odd numbers (as 
// we've already eliminated even candidates) and to only test up to the square 
// root of the candidate.
int sqrt = (int) Math.ceil(Math.sqrt(candidate));
for (int divisor = 3; divisor <= sqrt; divisor += 2) {

if (candidate % divisor == 0) {
return false;

}
}

return true;
}



8

Pseudo-code	approach	to	programming

1.	write	a	series	of	comments	outlining	the	steps
2.	Implement	each	step	in	code,	leaving	the	comment	in	place	



9

Defensive	Programming
¢ Key	Idea:	Protect	yourself	from	invalid	inputs

¢ Where	do	invalid	inputs	come	from?
§ Command	line	arguments
§ User	input	during	run
§ Programming	errors
§ Bad	data	files
§ Configuration

¢ check	all	data	from	external	sources,	input	parameters



10

Pre-conditions/Post-conditions
¢ Pre-condition:	a	condition/predicate	that	must	be	true	just	

prior	to	the	execution	of	some	section	of	code
§ If	a	pre-condition	is	violated,	the	effect	of	a	section	of	code	
is	undefined.

¢ Post-condition:	a	condition	that	must	be	true	after	the	code



11

What	to	do	if	a	pre-condition	is	violated?



12

Asserts
¢ Java	includes	an	‘assert’	statement	to	check	pre-conditions

assert list != null;

¢ If	the	condition	evaluates	to	false,	it	throws	an	
AssertionError

¢ Java	also	provides	two	argument	version;	second	argument	
(any	object	type)	is	included	into	the	thrown	AssertionError
object

assert list != null : “List was null”;



13

Which	is	better?

public static void main(String [] args) {
assert args.length >= 2 && args.length <= 3 : 

"This program takes 2 or 3 arguments";
...

A

B

C			 Both	are	fine
D Both	are	problematic

public static void main(String [] args) {
if (args.length < 2 || args.length > 3) { 

printUsage();
return;

}
...



14

Error	/	Exceptions
¢ Events	that	occur	during	program	execution	
¢ Disrupt	the	normal	flow	of	the	program

§ (e.g.	divide	by	zero,	array	access	out	of	bound,	etc.).	

¢ In	Java,	an	exception	is	an	object	that	wraps	an	error	event
§ contains	information	about	the	error	including	its	type

¢ Typically	handled	through	the	use	of	try/catch
¢ Important	piece	of	the	interface	of	a	method

§ Method	signature	includes	what	exceptions	it	might	throw



15

Kinds	of	Exceptions



16

How	does	try/catch	work?

public static int Sum(int [] array){
int sum = 0;
try {

for (int i = 0; true; i++) {
sum += array[i];

}
} catch (ArrayIndexOutOfBoundsException e) {

return sum;
}

}



17

To	catch	or	to	propagate/re-throw
¢ Fundamental	question	of	exception	handling:

§ Do	I	have	enough	information	here	to	decide	how	to	
respond	to	this	error?

§ If	not,	then	propagate	/	re-throw
§ If	yes,	then	handle	it	here



18

Throwing	Exceptions
¢ You	can	manually	throw	exceptions	if	you	want:

throw new Exception(“Invalid status”);

¢ You	can	define	your	own	kind	of	exception:

public class MyOwnException extends Exception {
// put anything you want in here!

}

throw new MyOwnException();



19

Hack	Illinois
¢ https://hackillinois.org/


